460 J. Phys. Chem. A999,103,460-477

Pictorial Representation of Anisotropy and Macroscopic Reorientations of Samples in
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The representation of second-order broadening effects in solid-state NMR by general fourth-degree surfaces
is presented. Static second-order quadrupolar and “dipglaadrupolar” interactions are treated in a unified

way. Most experiments involving the fast reorientation of samples such as magic-angle spinning, variable-
angle spinning, dynamic-angle spinning, and double-rotation and multiple-quantum magic-angle spinning
are also illustrated by using averaged fourth-degree surfaces. The equations of the surfaces are derived
analytically and allow the derivation of most results concerning these experiments. This article is an extension
of the representation of the first-order effects by quadrics to more complex broadening effects. Multidimensional
experiments will also be discussed in this frame. It can be noted that this approach is essentially Cartesian.
P,(cosf) andP4(cos#) Legendre polynomials are not explicitly used in this work.

1. Introduction order effects are predicted and first-order perturbation theory

Anisotropy is a common feature in solid-state NMR in the fails. In this case, fourth-glegree trigonom_etric polynomials are
presence of a strong magnetic fieBj. Indeed, all internal involved! It is then obvious that quadrics _can_not r_epresent
interactions at a given nucleus, such as chemical shift anisotropycCectly such effect® We shall demonstrate in this article that
(CSA), homo- and heteronuclear dipolar coupling, and quadru- static second-order shifts of lines can be _safely illustrated by
polar interaction (ifl > 1/2), are characterized by their general fourth-degree surfaces. The equatlon_s of these surfaces
anisotropy, giving the “strength” of the considered interaction. N the corresponding PAS are derived analytically.

This leads to broadened patterns (in the frequency domain), such When several lines are present, the obtained spectrum is
as lines subjected to CS¥Pake doublets(dipolar), first-order generally featureless, accounting for anisotropy of the different
quadrupolar satellitesand central transitions broadened by interactions. Resolution is therefore usually low for static
second-order quadrupolar effeéfwo more quantities can be ~ powders. Nethertheless, it was shown in the late 1988that
defined to fully characterize a given pattern: the asymmetry macroscopic reorientation of samples at a particular arggle (
(), which governs the “shape” of the line, and the isotropic = &m = 54.74) could average first-order interactions, leading
value of the interaction. This isotropic value is obtained to high-resolution spectral corresponds to the macroscopic
(neglecting solvent effects) in liquid-state NMR. In this case, angle between the rotor axis aBgl The magic-angle spinning
the average of the interaction is directly measured. All internal (MAS) technique is now widely used, and very rapid rotation
interactions can be described by second-rank symmetricalSpeeds (up to 33 kHz) are attained. We have shown that the
tensors First-order interactions can be well represented by the effects of MAS and variable-angle spinning (VAS, with=
so-called “representation ellipsoid”. Indeed, the interactions can &m) on first-order interactions could be graphically interpreted
be described by second-degree polynomials, involving classicalby using averaged quadri€This representation is very simple,
trigonometric functions. The intersection of these ellipsoids in as standard Cartesian transformations (involving 3matrixes)

the B, direction gives directly such polynomials. The “repre- are necessary. The noncontinuous version of MAS (magic-angle
sentation ellipsoid” is used in the frame of solid-state NMR hopping or MAH) was illustrated as well.

but more generally in physicsA given tensor is characterized It is well-known that rapid MAS cannot totally remove
by three principal components and three angles (Euler angles),second-order broadening effeétsi® In the late 1980s, more
which orient the considered principal axes system (PAS). In complicated reorientation schemes of samples were imple-
the PAS, the tensor is diagonal. It is well-known that the mented. The dynamic-angle spinning (DAS}° and double-
“representation ellipsoid” implies that the three principal rotation (DOR¥%21of samples allow indeed the total suppression
components are strictly positive. When one (or more) principal of second-order effects. These techniques were developped
component is negative (or zero), the “representation ellipsoid” especially in the frame of half-integer quadrupolar nuclei (the
fails. Several authof$ used recently a more complex repre- central transition<{1/2, 1/2) being actually under investigation).
sentation involving ovaloids. We have shown in a previous Recently, a novel scheme involving multiple-quantum transitions
article!® that the “representation ellipsoid” could be extended and classical MAS was proposed in the literature and success-
to generalized quadrics (including cylinders, hyperboloids, and fully applied to the study of half-integer quadrupolar nuéfei
planes), accounting for every set of principal components. In This new and appealing technique is now reffered to as multiple-
this approach, only second-degree surfaces are consideredjuantum magic-angle spinning (MQ-MAS). The mathematical
(ovaloids correspond to sixth-order surfaces). When a given treatment of DAS, DOR and MQ-MAS is now well established
interaction is comparable to the Zeeman interaction, second-and based on irreducible tensors, Wigner matrixes, and the
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ingenious derivation of Hamiltonians in termsf{cos0) and Oxx — Oyy
P4(cos0) (the second- and fourth-degree Legendre polynomi- No=—7
als)16.23\We shall show that averaged fourth-order surfaces are
suitable for the direct representation of DAS, DOR, and MQ-
MAS. One advantage of this approach is related to its
mathematical simplicity; the Cartesian representation of tensors [0,7 = [Oyy] = Oyl (2.4)
and Cartesian transformations of frames (involvingx33
matrixes) are the only prerequisites. No explicit reference to Other conventions may be found in the literatéhéhe [g]
Legendre polynomials will be made. The equations of the tensor is not necessarily axially symmetric; thatjg,may be
averaged surfaces will be obtained analytically, and most resultsdifferent from zero. To estimate the effects of the quadrupolar
concerning the DAS, DOR, and MQ-MAS experiments will be interaction on the line shapes, the diagonal tengfmak must
then easily derived. be expressed in the laboratory (LAB) framé,YoZ,), where

In this article, the following plan is adopted. Section 2 is theB,direction andZ, are coincident. The LAB frame is derived
devoted to the representation of static second-order effects byfrom the quadrupolar PAS frame by the Euler angiesf,yo),
fourth-degree surfaces. In this section, the central transition of which are presented in Figure 1. The various energy levels
half-integer quadrupolar nuclei is mainly investigated. Section corresponding to egs 2.1 and 2.2 can be writteBas Eﬁg) +
3 deals with the representation by surfaces of the dipolar E&) + E@ (= < m < 1). The different terms of this expression
coupling between &= 1/2 spin and & quadrupolar nucleus.  can be obtained by using standard second-order perturbation
In this case, second-order effects are also involved. Section 4theory!! Assumingnq = 0,
is devoted to the representation of MAS and VAS on second-
order interactions, introducing averaged surfaces. Section 5 is EQ=—-hyB,m (2.5a)
related to the DAS, DAH (dynamic-angle hopping), and DOR
experiments. The exact derivation of DAS angle pairs is given. 1) _
Section 6 is devoted to the MQ-MAS and MQ-VAS (multiple- ™
guantum variable-angle spinning) methodologies. Averaged 3
surfaces allow us to derive the main results of these experiments 4
forl=n2(n=3,5,7,9).

. ., ) . . 3CQ 2 27 3

The “Solve” routine of Mathematica was sometimes used. Eﬁﬁ) = —hn{ {_ co< B, (L— cog Bo) x

All 3D representations were done by using graphical routines 2121 — 1)] 12yB, (2

of Mathematica. (B — 41(1 + 1)+ 1] + 5(1.— cod f—2nt +

0=ny=1) (2.3b)
Ozz

which corresponds to the asymmetry, using the convention

h

1
21— 1 a® 008 B~ it — 310+ 1] @5b)

2. Quadrupolar Interaction: Representation of First- and

Second-Order Effects in a Static Experiment 201 +1) - 1]} (2.5¢)

In the presence of a strong external magnetic figldthe y is the gyromagnetic ratio of the nucleus of interest aid
Hamiltonian of a nuclear spin with a quadrupole momért ( = w,. Cq = (2qzQ)/h is the quadrupole coupling constant.
1/2) can be writteh2* The first-order quadrupolar shift corresponding to two consecu-

tive levels (n — 1, m) (expressed in angular velocity units) is
H=H,+ HQ (2.1) then derived.
N R (1)static__ —1/~(1) _ (1) —
H, corresponds to the Zeeman Hamiltonian, wherégs on'im —h T Ens —ER) =
corresponds to the quadrupolar Hamiltonian. Moreover, we 3(1— 2m) e2Q1

suppose thatd, can be treated as a perturbation of the AR —1) 5%22(3 cog f, — 1) (2.6)
Zeeman interaction. Following Hard$the quadrupolar interac-

tion h’lHQ (in angular velocity units) may be represented by a The expression given by eq 2.6 can be generalizeghte 0.
second-rank symmetrical tensog][ such that h‘lHQ = )

kolla]l. ko adjusts the magnitude and dimension of tiag [ ).static_ 3(1-2m) &Q 1sz(3 cod B — 1+

tensor. In the PAS (0XY2), [q] is diagonal andy; (i = X, Y, Lm0 - 1) A2
andZ) are the principal components. In the respective PAS, _ 3(1— 2m) ezQ
Ule} Sln2 ﬂo CoSs 210) = m ? qzozo (2.73)
eZQ qxx 0 0
=————0 0 2.2 ith
kolal 202 — R Gy (2.2) wi

0 0 0
Oz7, = COS &y SIN” B, Gy + SIN” @y SIN” B, Gy +

Q corresponds to the quadrupole moment of the nucleus and cos’ﬁ 0,7 (2.7b)

egi = Vi are the Cartesian components of the electric field otz

gradient (EFG). This tensor in traceless (in agreement with the g5 | — /2 (h=

Laplace equation, that i$;x y i = 0). Therefore, only two

independent parameters are required:

3,5, 7,9), the so-called central transitian (
= 1/2) is not shifted by the first-order quadrupolar interaction.
m= 1/2 corresponds to thel(2- 1) satellites. Though egs 2.7a
and 2.7b are strictly analogous, eq 2.7b allows us to give a
€07z = Vzz (2.32) simple pictorial representation of the anisotropy induced by the
quadrupolar interactiot?. As stated above, the tensay][is
which is related to the anisotropy of the interaction and traceless. It implies that at least two principal components are
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Figure 1. Definitions of the Euler angles, fo, yo) transforming a
given PAS frame XY2 into the LAB frame K,YoZo). (@) PAS frame

is rotated counterclockwise around tEeaxis by o,. This rotation
generates a new fram&'{'Z2). (b) counterclockwise rotation of the
(X'Y'Z) frame aroundY’ by 3, generates a second intermediate frame

(X"Y'Zy). (c) This second intermediate frame is rotated counterclockwise

by y, aroundZ,, resulting in the X,YoZ,) LAB frame. Using these
definitions, o, andf, represent the polar angles of tBgdirection in
the PAS.

of opposite signs (they can be eventually zero). As an example,

we assume thaixx > 0, gyy > 0, andqgzz < 0. Let us define

the following quadrics (second-degree surfaces) in the quadru-

polar PAS.
O+ OyyY — |0z1Z° = 1 (2.8a)

OhooX’ + OyyY” — 427 = —1 (2.8b)

Equations 2.8a and 2.8b correspond to elliptical hyperboloids
of one and two sheets, respectively. They are represented in

Figure 2. WhenB, is oriented from the quadrupolar PAS by
the Euler angleso(, o, 7o), it is located in the plane containing
theX'(0,) andZ axes (see Figures 1 and 2). The intersection of
the hyperboloid of one sheet (eq 2.8a) by Xiéo,)Z plane
corresponds to an hyperbola, whose equatioK {(0..)Z is

(€O 0, Gy + SIMF 0, QX2 — g 122 =1 (2.9)

This hyperbola exhibits two asymptotes, oriented franby
W(0,) (Figure 2a). The expression of il (a,) is given by°

[o72]
cos a, Oy + SiN &, Gyy

tarf W(o,) = (2.10)

Assuming tha3, > W(a,), the radiusr corresponding to the
intersection of the hyperbola in iy direction is derived using
X' =r sin o, Z=r cosp,, and eq 2.9. One obtains

Bonhomme and Livage

Figure 2. Pictorial representation of anisotropic first-order quadrupolar
interaction forgxx > 0, qyy > 0, andgzz < 0. Intersections by the
plane containind3, are also given. (a) Elliptical hyperboloid of one
sheet. taf P(o,) is given by eq 2.10. Intersections with tb&(o)
axis are given byt(coS o, Oxx + Sir? a, Qvy) Y2 WhenS, > W(ay),

the equation-r—?) = g, holds. The sign of the first member of the
equation is emphasized. (b) Elliptical hyperboloid of two sheets.
Intersections with th& axis are given byt|gzz =2 Wheng, < W(a),

the equation{r—?) = g, holds. The sign of the first member of the
equation is emphasized.

r = (cos a, Sirf f, Gy + Sin” a, Sin B, Gyy —
cos B, 10,7) 2 (2.11)

When eqgs 2.11 and 2.7b are compared, it follows that {)
= Qzz.- The sign+ is emphasized in this expression as well as
in Figure 2a. Therefore, a simple pictorial representatiagygf
is given. Wheng, — W¥(o), gzz, — 0, asr — «. The zero
value of the tensor componey 7, is attained, but in this case,
it does not correspond to a principal component. Whgrs
W(o,), the B, direction does not intersect the hyperbola
presented in Figure 2a. However, one can use the complemen-
tary quadric given by eq 2.8b (Figure 2b). Again, the intersection
of this quadric by theX'(a,,)Z plane corresponds to an hyperbola,
whose equation iiX'(o)Z is

—(cog a, Gyy + i’ o, X2+ 0,22 =+1  (2.12)
Using eq 2.12 and assuming that < W(o,), the intersection
radiusr is then given by

r = [—(cos a, Sin’ B, Qyx + SINF o, SIN B, Gyy) +
cog B, 19,1 M (2.13)

It follows that (~r~2) = gz, Again, the sign- is emphasized

in this expression as well as in Figure 2b. Wifgr= 0, (—r—2)

= —|qzzl = gzzand the negative principal component is attained.
It has thus been shown that first-order effects of the quadrupolar
interaction can be represented by two complementary quadrics.
It is interesting to note that in this case, the popular “representa-
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tion ellipsoid’® fails, as some principal components are negative.
Whennq = 0, the surfaces are of revolution, withas the
unique axis of revolution. Moreover, when one principal
component is zero, a pictorial representation of anisotropy is
then given by a set of two complementary hyperbolical
cylinders!® The important point is that second-degree surfaces
(that is quadrics) are suitable for the representation of first-
order effects. We have also shown previously that they are also
suitable for the direct representation of macroscopic reorientation
of samples and that they account for the suppression of first-
order interactions under MAS (assuming that the rotation speed
of the sample is much higher than the involved interactions).

We now turn to quadrupolar second-order effects. The
quadrupolar interaction can be very large, so that the first-order
perturbation theory is not always adequate. Wﬁl%:;becomes Z
comparable tdH, (see eq 2.1), second-order effects must be (b) \
taken into account. For=n/2 (n = 3, 5, 7, 9), the central
transition 1/2, 1/2) is mainly observed, with the satellites lines
being smeared out over the megahertz range. In the following
sections, the central transition will be mainly considered (except
in Section 6). Using eq 2.5¢c and assumipg= 0, the second-
order quadrupolar shift of the central line is given by

v

2),static _ 3 —1,=(2 2y
w(—i/‘iﬁ/lg— h (E(_i/z - E(1/)2) =

C71/2,1/2[g sir? Bo(9 cog Bo— 1)| (2.14)

(omitting w¢s corresponding to the true chemical shift). The

constanﬁ__l,zyyzis related to_ the quadrupole coupling constant Figure 3. (a) Fourth-degree surface corresponding to eq 279

Cq and is inversely proportional to, as 0). TheZ axis of the PAS corresponds to the axis of revolution. (b)
Section of the surface by any plane containing theaxis. The
asymptotes are given b = 0° and®d, = 70.53 (see text)rmin =

(1 +1)—3/4] (2.15) (2/3)Y* is associated to the anglg, = 41.8F. The sign+ is
emphasized.

Corpup= — 2 [ e F°
T2z 6w, |21(21 —1)

It is interesting to note that the anisotropy of the central transition . )
due to second-order effects is represented by the polynomialthey allow only a satisfactory representation of second-degree

Q(B) = 3/8 it fo (9 cOZ fo — 1); fo Orient B, from the polynomials (see egs 2.7b and 2.11). Novel surfaces must be

quadrupolar PAS (Figure 1). Equation 2.14 can be generalizedconSidered- The equations of these surfaces in the quadrupolar
for 5o = 0 ags PAS will be first derived fomq = 0 and then generalized for

nq = 0. In the PAS, the relationX = r cosa, sinfo, Y =

@).static _ ~ Al cod B+ B(a. cog B + r sino, sinBo, andZ = r cosp, hold. It follows thatX? + Y2
0212112 G122 Ao 1) €OS o + B(s, 17q) COS = r2sir? i, andZ2 = r2 cog f3,. The polynomialQ(c,) can be
Clag 7Q)] (2.16)  \yritten Q(aw) = (3/8) sir? fo(8 COZ o — SN Bo) OF

with . .
r'Q(B,) = (3/8)(r* sin” B,)[8(r* cos ) — (r* sir’ )] =
(3/8)(7 oS 21,)* (2.17a)
Now, we consider the fourth-degree surface, whose equation

B(0to,770) = 30/8— (1/2)4° — 21 COS 2, + in the PAS is

(3/4)(7qcos 210)2 (2.17b) (318)(X% + YA)[8Z2 — (®+ Y] =1 (2.19)

2

C(0"0"7Q) =-3/8+ (1/3)’7Q o (1/4)'7Q COS 2, — This surface is obviously of revolution, with tieaxis as the

(3/8)(q cos 2)? (2.17¢) axis of revolution. It is presented in Figure 3a, as well as the

intersection of this surface by any plane containing Zrexis

C_12121S given in eq 2.15. Again, the anisotropy is represented (Figure 3b). The intersection curve exhibits two asymptotes,
by the polynomiaR(c,30) = A(0lo770) €OS' B + B(Clor7q) €O o oriented from theZ axis by® = 0° and®,, (see Figure 3b)D,
+ C(ao,17q). To give a suitable pictorial representation of the is characterized by tdwb, = 8 or &, = 70.53. The minimum
second-order effects on the central transition, one must connectadiusrmin is obtained fory,. The exact value of, is obtained
a surface (or a set of complementary surfaces) with the by derivation of the expression $ifis(8 co$ S, — Sir? fBo). It
polynomials Q(a,) and R(0o,B0). Qo) and R(ao,[.) are follows thaty, = (1/2) arccos (1/9) oy, = 41.8F andrmin =
obviously fourth-degree polynomials of the trigonometric func- (2/3)"4. Using eq 2.19, the radius corresponding to the
tions. It is then evident that second-degree surfaces such asntersection of the surface in thg direction (characterized by
quadrics cannot be connected @fo,) and R(0,,50). Indeed, the polar angleso,f0)) is then derived as
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r = [(3/8) sirf B,(8 cog B, — sin’ )] V* (2.20a)
(+r) = Q)

Equation 2.20b gives therefore a simple pictorial interpretation
of the second-order interaction described@3,); the intersec-
tion of the surface presented in Figure 3 in edirection is
directly related to the second-order quadrupolar shift. The sign
+ is emphasized in eq 2.20b as well as in Figure 3. Whgen

— 0° or @, r — 0 andQ(B,) — 0; the second-order quadrupolar
shift vanishes. Whefi, = y,, the shift is maximum (in absolute
value), asr is minimum. Obviously, when3, > @, no

(2.20b)

intersection is obtained. One can then use the complementar)?(

fourth-degree surface, whose equation in the PAS is given by

BB+ Y)B8ZZ— (X*+ Y =-1 (2.21)
Again, this surface is of revolution and is presented in Figure
4a. The radius corresponding to the intersection of the surface
in the B, direction is given by

r=[—(3/8) sirf B,(8 coé B, —sif )] "  (2.22a)

(-1 =Q(B,)

The sign— is emphasized in this equation and in Figure 4. The
relation betweem andQ(f,) is now different but remains easy

to visualize. Therefore, the second-order quadrupolar interaction
for the central transition is fully represented by a set of two
complementary fourth-degree surfaces. This situation is rather
similar to that encountered for first-order effects (see above);

(2.22b)

indeed, a set of two hyperboloids was necessary for the complete

pictorial description of anisotropy. However, in the case of
second-order effects, two major differences are noted: (i) the
involved surfaces are fourth-degree surfaces andii){) is
related to the anisotropic shift instead dfr(?). Finally, it is
possible to relate the powder pattern of the central trandition

(a)

Figure 4. (a) Fourth-degree surface corresponding to eq 2y31=

0). TheZ axis of the PAS corresponds to the axis of revolution. (b)
Section of the surface by any plane containingZtais. The asymptote

is given by®, = 70.53. The sign— is emphasized.
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in a static experiment and the particular angies and y,
presented above (Figure 5).

Whenng = 0, the anisotropy related to the central transition
is given by the polynomiaR(o,30) (See eq 2.16). We consider
the set of two complementary fourth-degree surfaces given in
the quadrupolar PAS by

axX' + bY' + cZ' + XY + eXZ? + Y22 = +1  (2.23)

wherea—f are unknown functions ofq for the moment. In the
PAS, the following relations hold:X* = r4costa, (1 —
€02 Bo)% Y4 =141 — co o)1 — co% Bo)? Z* = r* cos fo;

2y? r*cof ao(l — cofao)(l — cof By’ X222 =
r*cog o, cog Bo(1 — o Bo); andY2Z2 = r4(1 — cog o) cog o

(1 — cog Bo). Inserting these relations in eq 2.23, we impose
moreover that£r—4%) = R(0,,00). After rewriting R(a.o,30) in
terms of cosine functions, the equatiabr(*) = R(c,,530) leads

to the following system of six linear equations:

b= —3/8+ (1/4), — (1/24)’

—2b+d=—(1/2), + (31215
a+b—d=—(32)g’
4b—2d+e—f=—(4q+3)
~20 + f = 15/4+ 25 + (142

b+c—f=—27/8— (94, — (3/8ys° (2.24)
This system is easily solved, and the complementary fourth-
degree surfaces are then given by eq 2.23 and

a=—(3/8+ (LAY, + (124y)

b

—3/8+ (L/4yo — (1/24%4°
c=—(16)y

d

6/8+ (17/12)4°
e=3— (512 + (1/6)1y°

f=3+ (5/2nq + (16} (2.25)
Generally, these surfaces are not of revolution. Sections of these
surfaces by th&XZ andYZplanes are given in Figures 6 and 7.
Whenng = 0, egs 2.19, 2.21, and 2.23 are identical. As a
conclusion, we have shown that a direct pictorial representation
of second-order effects on the central transition can be proposed,
using a set of two complementary fourth-degree surfaces. The
analytical expressions of their equations in the PAS have been
given. To our knowledge, such a direct Cartesian representation
of second-order interactions was never proposed in the literature.
It will be seen below that these surfaces are suitable not only
for the direct representation of anisotropy but also for a pictorial
representation of MAS, VAS, and higher-order trajectories.
Before considering the effects of macroscopic sample reorienta-
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Figure 5. Pictorial representation of second-order interaction using X
the set of complementary fourth-degree surfaces (egs 2.19 and 2.21).
The signs+ and — are emphasized. For particular orientationsBef
in the quadrupolar PAS3( = 0°, y., ®, and 90), the corresponding
resonance shifts are indicated on a typical second-order broadened line
shape §qo = 0). The quadrupolar dimension is given@1,1> Units
(see eq 2.15). Figure 6. Sections in th&XZ plane of the fourth-degree surfaces defined

by eq 2.23 for variableno. (XY2 is the quadrupolar PAS. The
tions, we illustrate with geometrical surfaces the dipolar coupling corresponding equation &X* + cZ* + eXZ? = +1 (see egs 2.25). (a)

of al = 1/2 spin to a quadrupolé® spin (Section 3). 7o = 0. Asymptotes are located (frod) at ® = 0° and® = 70.53
(cog ® = 1/9) (see also Figure 3b). (h)y = 0.5. Asymptotes are

3. Pictorial Representation of Coupled Interactions: located (from2) at @ = 8.6% (co$ @ = (9 + 4v/2)/15) and® =

Dipolar Coupling to S > 1/2 61.83 (cog ® = (9 — 4v/2)/15). (c) ne = 1. The asymptote is

located (fromZz) at ® = 35.26 (co$ ® = 2/3). *The curve associated

As stated above, higher interactions involve fourth-degree to ax4 + cz* + eXez? = +1 is imaginary 4 = —2/3;c = —1/6; e =
expressions of the basic trigonometric functions. Among them, 2/3). ax* + cZ* + eXtz2 = —1 is represented.
the dipolar coupling of & nucleus [ = 1/2) to a quadrupolar ]
nucleusS (S > 1/2) has been carefully analyzed in the past and Zy = (ynBo)/27 is the Zeeman frequency of theN.
years, theoretically and experimentaify?® These spin pair ~ Equations 3.1 correspond to a special case whgre: 0 and
systems were especially studied under MAS conditions, leading the dipolar and quadrupolar PAS are coincident (the internuclear
to “dipolar-coupled” spectra for the spin. Moreover, it was radiusrcn is coIImear with theZ axis of the quadrupolar PAS).
observed that this residual interaction cannot be completely General expressions are given in ref 26. Obviously, no second-
eliminated by rapid MAS (for the description of rapid MAS on degree surface can give an accurate representation of the shl_fts
this particular interaction, see Section 4). Originally, asymmetric "eépresented by eqs 3.1. Following the approach presented in
doublets were observed in spectra related®@-14N (S = 1) Section 2, we cons_lder t_he set ofgeneral complementary fourth-
pairs2® The 13C resonance frequencies associated to the different degree surfaces given in the unique PAS by
ms states of thé“N nucleus were calculatéd leading to the
following expressions of™"

static 9[2DCq 2 2 These surfaces are of revolution (with as the axis of
wo =5\ Tz | Po(1—cosBy)  (3.18)  revolution), as only one Euler anglgd is involved in eq 3.1.
Moreover, we impose thatHf %) = wfr‘szor ms= 0, +1, and
—1, respectively. Systems of linear equations (comparable to
eqs 2.24) are obtained in each case. The obtaRgdn, Cmg
_ ) values are given in Table 1. The corresponding surfaces are
0= 592 — 27D(3coé B, — 1)  (3.1c) presented in Figure 8. One notes that the equadigf?(X? +
Y2) = —1 corresponds to an imaginary surface. The surface
whereCq = (€2qz2Q)/h is the quadrupole coupling constabt, related toCoZ?(X? + Y?) = +1 exhibits two asymptotes af 0
= (uo/4m)(h/27)(ycyn)/ricn is the dipolar coupling constant, and 90. The shape of this surface is comparable to the one

aﬁg(x2 + Y32 + b”gz4 + CWEZZ(XZ +Y)=+1 (3.2)

0= —S92 + 27D(3coé f,— 1)  (3.1b)
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Figure 7. Sections in theZplane of the fourth-degree surfaces defined
by eq 2.23 for variableyo. (XY2 is the quadrupolar PAS. The
corresponding equation sY* + cZ* + Y222 = +1 (see eq 2.25). (a)
nq = 0. The curve is similar to the one presented in Figure 6a. The
corresponding surface is of revolution. () = 0.5. Asymptotes are
located (fromZ) at ® = 5.63 (co® ® = (11 + 4+/6)/21) and® =
76.16 (cog @ = (11 — 4x/6)/21)). (c)no = 1. The asymptotes are
located (from Z) atd = 9.7 (cog ® = (3 + 2/2)/6) and® =
80.26 (cog @ = (3 — 2v/2)/6).

<

TABLE 1: Values of the Coefficients ang, bm, Cmg INVolved
in the Pictorial Representation of the Dipolar Coupling of a
| = 1/2 Spin Coupled to a Quadrupolar S Spif

a b [

0 0 0 (9/2) (2tDCo)/Zy
1 —27D 47D 27D(1 — 9/4(Co/Zy))
-1 +27D —47D —27D(1 + 9/4(ColZy))

@ Cq corresponds to the quadrupole coupling constaig.the dipolar

constantZy is the Zeeman frequency of the quadrupolar nucleus (see

Section 3).

related to the{1/2,1/2) central transition broadened by second- £ jer anales from the PAS (Fiqure 9
order effects (see Section 2 and Figure 3). Surfaces related t glesd, . ) (Fig )

ms= =+ 1 (parts b and c of Figure 8) include a “classical” dipolar
term, corresponding to the expressiti@zD(3 cog S, — 1) in
egs 3.1.

4. Rotation of Samples around One Single Axis: MAS
and VAS

Andrew and Lowé?13demonstrated first that rapid rotation
of samples around the “magic-angl&’ € ) allows the total

(o)

Bonhomme and Livage

Z
a)
ms=0
b)
ms=+1
c)
ms=—1

Figure 8. Surfaces of revolution illustrating the dipolar coupling of a
| spin to aS> 1/2 spin (in the quadrupolar PAS). They correspond to
amdX? + Y22 + bnZ* + cnZ? (X? + Y?) = +1 (see Table 1 and eq
3.2) o =1 and D = 10, in arb. units): (ajns= 0; (b) ms = +1;

(c) ms = —1. *The surface corresponding tg Z? (X> + Y?) = —1is
imaginary @, = b, = 0).

suppression of first-order interactiortscorresponds to the angle
between the rotor axis arigh. When6 = (, the reorientation
technique is known as VAS. Application of MAS and VAS to
quadrupolar nuclei was mainly investigated in the early 1988s.
It was soon demonstrated that MAS cannot completely eliminate
the second-order effects on the central transition. In fact, a
residual broadening of the line is observed for everWe shall
now illustrate the effects of MAS and VAS by considering the
fourth-degree surfaces presented in Section 2 and simple
Cartesian transformations. Most of the results will be demon-
strated foryg = 0, using eqs 2.19 and 2.21. They can be
extended as well tgq = 0 by using egs 2.23 and 2.25. Finally,
it should be noted that this approach is strictly analogous to
that used for the direct representation of MAS effects on first-
order interactiond? Let us consider the central transition of a
quadrupolar nucleus, broadened by second-order effggts: (
0). In the PAS, the pertinent fourth-degree surfaces giving the
second-order quadrupolar shift (@v-1/2,1/2 units; see eq 2.15)
for every crystallite’s orientation are

(3/8)¢% + YI)[8Z2 — (X* + YI)] = +1 (4.1)
We consider a rotor frameXgYrZr), which is oriented by the
. Equations 4.1
can be written in XgYrZg) by using the matrixP and the
expressions foX?, Y4, ... Y2Z2 in terms ofXg, Yg, andZg (see
the Appendix). Spinning the sample implies thabecomes a
function of wyer Wherewor = 27tvior COrresponds to the pulsation
of the rotor. We suppose that, = o, that is, vy is much
higher than the considered interactions in hertz. When the
expressions ok?, Y4, ...Y2Z2 are expanded (see the Appendix),
trigonometric terms involving are averaged by considering
the following integrals:
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rotation

S—

Figure 9. Pictorial representation of rapid rotation of the sample around
one axis @ = Cm, MAS; 6 = Cm, VAS). In the static rotor (left side),
the crystallites are randomly oriented frodr{rZg). The surface is
drawn in the PAS of each crystallite (characterizedzbyq = 0). In

the rapidly rotating rotor (right side), the corresponding averaged surface

is represented. It is of revolution and adniisas the unique axis of
revolution. Intersections with the horizontal axis afigare given by
+[A(B)]~Y* and £[B(B)] " (see eqgs 4.4), respectively (we suppose
here thatA(f) > 0 andB(f) > 0). The intersection of the averaged
surface in theB, direction gives .

s =5 Ji (cosy) (siny)*dy 4.2)

for r = 0—4 ands = 0—4 with (r, s) = (0,0) andr + s < 4.
Useful values of, s are given in Table 2. Under rapid rotation,

the averaged fourth-degree surfaces (Figure 9) are given in

(XRYRZR) by

AB)Xe” + Y&)? + B(B)Zg' + CB)Z (X" + V&) = £1

(4.3)
with
A(p) = (3/64)(27 cod f + 14 coé g + 5)
B(f) = (1/8)(—27 co$ 5 + 30 coé § — 3)
C(B) = (3/8)(27 co8f —22co$f+3)  (4.4)

The averaged surfaces are of revolution withas the axis of

revolution. All these surfaces are different as their equations

depend explicitly on3. Moreover, depending on the sign of
Ap), B(f), andC(B) (eqs 4.4), variable curves related to eqs

4.3 are obtained. Several of them are presented in Figure 10. In
most cases, egs 4.3 correspond to complementary surface

When A(f3), B(ff), and C() are strictly positive, it is evident

TABLE 2: Useful Values of the Integrals I, for (r + s) < 4
and (r, s) = (0, 0) (see Section 4 and Eq 4.2)

S
r 0 1 2 3 4
0 0 1/2 0 3/8
1 0 0 0 0
2 1/2 0 1/8
3 0 0
4 3/8
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Y4 Z

(a) ‘R (b) R
o BO
p=0 ‘ B4 B=30°
/T\
/\M\ |
(c) Zg
B=60°

(d) Zr
B=90°z z

Figure 10. Averaged surfaces of revolution under rapid rotation of
the sampleZg corresponds to the axis of revolutioB, is oriented
from Zz by 0. (a) 5 = 0°. The curve is comparable to the one presented
in Figure 3b. Asymptotes are at @Gnd 70.53 (from Zg). (b) § = 30°.
Intersections with the axes are given-hfA(30°)] "4 and=+[B(30°)] 4
(see egs 4.4). (¢§ = 60°. Intersections with the axes are given by
+[A(60°)] V4 and+[B(60°)] ~* (see eqs 4.4). (j = 90°. Intersection
with the horizontal axis is given by:[A(90°)] ¥4 = £(15/64) V4. The
asymptote is located fronZg at ® = 29.22 (co€ ® = (7 + 2

V/46)127).

that one of eqs 4.3 corresponds to an imaginary surface. It
follows that thet+ surface is a closed one (see for instafice
30° in Figure 10). Finally, it can be noted that the intersections
of the averaged surfaces in tlg direction are given by
B(f)Z:' = +1 (4.5)

(the intersections can be imaginary).

Using eq 4.1, the intersection of the static surfaces irZthe
direction corresponds to a radigsgiven by

(3/8) sirf f(8 co$ f — sif p)IR* = +1  (4.6a)

B)R' = +1 (4.6b)
Equations 4.5 and 4.6b give a simple geometrical interpretation
of Zg; it corresponds simply to the intersection radius of the
static surfaces in the rotor axis direction. Physically, it implies
that no averaging occurs in th#& direction during rotation,
whereas averaging occurs perpendicularly to this axis. We
suppose now thdd, is oriented from the rapidly rotating rotor

S‘oy the anglef® (see Figure 9). If0 = &n, this situation

corresponds to MAS. The intersection radiysf the averaged
surfaces related to eqs 4.3 in tBgdirection is then given (for
a fixed value of6)) by

£r, = AQB) sin' 6 + B(B) cos' 6 + C(B) sir’ 6 cos 0
(4.7)

A(p), B(B), andC(p) are given in eqs 4.4. One can then derive
easily the second-order shift under rapid rotatiof &r each
crystallite’s orientation as
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20 _ -4
w(—i/2,1/2_ Coipap(Ers ) o)

= C_yp1(AB) sin’* 6 + B(B) cos' 6 + C(B) sirt 6 cos 6)
(4.8)

C_112112is given by eq 2.15. Fof = &m, eq 4.8 becomes

0@ ,= (U16)C 15 1,421 cod B — 18 cod f +5) (4.9)

Equations 4.8 and 4.9 are strictly analogous to equations
proposed in the literatu®:32 At this stage, it is interesting to
note that the quadrupolar shifts under VAS (eq 4.8) and MAS
(eq 4.9) were easily derived by using the surfaces presented in
Section 2. A clear pictorial representation is given. It is worth
noting that the only prerequisite is the knowledge of the energy
levels corrected by standard second-order perturbation theory
(see Section 2). Equations 4.4.9 allow us to visualize the
effects of VAS or MAS on the broadening of the central

SR SRV (YT T SN N SR WU SR NN T S R W R
transition.w®)}, , , is plotted versug for various values of 04T %0 a0 60 80
in Figure 11. The static second-order quadrupolar shift is also B
plotted, using eqs 2.19 and 2.21 ader (*)static = (3/8) sir? Bo
(8 cog B, — Si? o). For a fixed 0 value, |03 1 Jmax — Figure 11. MAS-VAS experiment. Plot of»®)}, , , versusp (see eq

4.8). The vertical axis is given i€_12,1/, Units (eq 2.15). For a fixed

0 value,|(cu(_2{,92yl,gmz1X - (w(_zi’,(’zvl,z)mim corresponds to the residual line
width. The minimum residual line width; is obtained for§ ~ 70°.

(@%5 1 minl corresponds to the residual line width of the
central transition. Most results concerning the MAS-VAS
techniques are illustrated in Figure 11. (i) Reorientatiof &t

0° does not affect the static line width. In this cages 3, and 9 _

eq 4.8 becomes ﬁ(irﬁ )=0 (4.13)

w(ﬁzi,g‘m: C11p1B(BY) = w(fi/sztit;g (4.10) for everyf (@ is fixed). Using eqs 4.4 and 4.7, eq 4.13 becomes

27/16)56) cos' B — (3/16)T(0) cosf =0 (4.14
(see also eq 2.14). (i) It appears thamﬁf‘()l',”z’I,Q)maX - . ( ) p=( T(6) p ( )
(@9 1 min] is never zero. In the MAS case, eq 4.9 leads to With

@A A= (VLAC 1211 (4.11a) S0)=35c0o86 —30cod 6+ 3 (4.15a)

_ T(0) =135c086 — 102 coéH+7  (4.15b)
for Bmax given by €03 Bmax = 3/7 or fmax = 49.1T and to
If eq 4.14 is fulfilled for everyg, then the following equations

(w(2%./czml/ = (12)C 11 (4.11b) must be fulfilled simultaneously:
12 2dmi _12, .

S0) =T(0) =0; 0 € [0,90°] (4.16)
for Bmin = 0°. Equations 4.11a and 4.11b are in agreement with
results given in the literature. It is interesting to note that  S(#) = 0 implies cosd = (3 + 2 V6/5}Y3/7 or 0, =
w@én < 0, asC_yp12 < O for everyp. It follows that the ~ 30.56 and 6 = 70.12. T(6) = 0 implies cost = (17 + 2
residual line is totally shifted apart from the true isotropic V46)2/(3V/5) or 6 = 34.50 and 6§ = 73.96. Obviously,
chemical shift. This is a general and well-known result. It can the system of egs 4.16 has no solution. It follows that no rotation
be understood geometrically by considering the Figure 10. The at a given angl® allows the total suppression of second-order
intersection of each curve in th#, direction atd = ¢, from broadening. At this stage, it can be noted that no explicit
Zy exists for evenys. It implies that ¢-rg~#) in eq 4.7 must be reference to the second- and fourth-order Legendre polynomials
considered. (iii) The minimum residual line width is obtained P»(cos 6) and P4(cos ) was made. Netherveless, it can be
for @ ~ 70°. This result was also emphasized in the literafiire. realized that

The most important point concerning the MAS-VAS experi-
ment is that no single-axis reorientation can totally remove the
second-order broadening of the central transition. We shall
demonstrate this important result just by using eqs 4.4 and 4.7.
One can note that this approach will be used several times in_ .
. . . . - with

the following sections. If rapid rotation at a particular value of
0 allows the total suppression of the second-order broadening, P,(cosf) = (1/2)(3 coé o — 1) (4.18a)
it follows (eq 4.7) that

S(0) = 8P,(cos0)

T(6) = (216/7P,(cosb) + (64/7P,(cosh) (4.17)

i, 4.12) P,(cosf) = (1/8)(35 co86 —30cod 6 + 3)  (4.18h)
Solving the system 4.16 is then equivalent to finding a common

C; being a constanindependent off. Equation 4.12 implies root toP,(cosf) andP4(cos). This is actually impossible and

that this statement has been widely used in the literature for the
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interpretation of the MAS-VAS experiment dealing with qua- easily and connected directly to the averaged fourth-degree

drupolar nuclet®3435However, it does not represent a key point surfaces related to eq 4.20.

of our discussion (see above). The effect of the MAS-VAS experiment on dipolar coupled
Finally, we give generalized formulas fgg = 0. As stated |—Ssystems $ > 1/2) (see Section 3) will now be presented.

in Section 2, the complementary fourth-degree surfaces ac-Representative surfaces of this particular interaction are given

counting for the second-order broadening are given in the PAS by egs 3.2. As presented above and using the intebralsee

by eq 4.2 and Table 2), averaged surfaces can be defined under

rapid rotation for everyn value. These averaged surfaces for

aX!+ bY* + cZ' + dX®Y2 + eXZ? + Y22 = +1 (4.19) my= 0, +1, —1 are given in XrYrZg) by

a—fare given in eqs 2.25 and are functiongjgf These surfaces G (8)(X,2 + Y22 + H,_ (8)Zs* +
are not necessarily of revolution. Following the calculations for s R R msVITR
no = 0 presented above, the averaged fourth-degree surfaces Ims(ﬁ)ZRZ(XR2 + YR2) +1 (4.25)
are given in XrYrZRr) by
with
D(of) (%" + Y& + E(@.B)Z5" + ,
FBZE (% + Y =+1 (420)  Cnlf) = (3/8)@n, + by, — Cp) cOS S +

(1/4) @y, — 30y + C) COF 8 + (1/8)(3a, + 30, + C1)

with
D(o.B) = —(9/64)[9-6 no(cos 2x) + Hn(8) = (8, + b, — C) COS' B +
1q (cos x)?cos’ B + (1/32) 21401 (cos D) + (—28,, + ¢,) COE B+ 2y,

ng 12 + 9 (cos )7} cos B+ (1/192) 45+ \
780(cos 1) — nA27(cos )2 — 16} 'm{F) = 73 F b, = Cn) COS S+ (28, + 30y, —

5/2 $h+(a, + (112 4.26

E(e.8) = —(3/8)[9 — 6(cos &) + n47(cos x)?cos’ B + (5/2)n) COS (3, + (1/2)n) (4:26)

(1/4) 15 — 8y(cos 1) — 2[2 — 3(cos 21)2]} co§ﬂ — The am, bm,, andcy coefficients are given in Table 1. We
Q qQ U N . :
5 5 ppose thaB, is oriented from the rapidly rotating rotor by
(1/24X9 + 6n7(cos 2x) + 15[9(cos 2)” — 8]} the anglef. The intersection radius; of the averaged surfaces
(egs 4.25) in thdB, direction is given by
F(o,) = —(9/8)[-9 + 6y(cos 2n) —
-4 _ 4 4
ng (cos )7 cos' B + (1/4) —33+ 32q(cos 2u) + £ry =G () sin" 0 + Hp (B) cos 6 +
1o [2—9(cos 2]} cos B + (1/24) 27 — 30y4(cos 21) — |, (8) coS O sir’ 6 (4.27)

2rq 2
s [8 —27(cos 2077} (4.21) For 6 = {n, (that is, MAS), one obtains under rapid rotation
As stated above, the intersection radiyg of the averaged Em _

surfaces related to eq 4.20 in tBg direction is then given by wg" = ¢/18 (7 COéﬁ 6 co§ﬁ +3) (4.283)

1, = D(a,B) sin' 0 + E(o8) cos 0 + 0§y = 0 = —(wg")/2 (4.28b)

F(a,B) si’ 6 cos 6 (4.22) It is obvious that rapid MAS cannot suppress completely the
involved interaction and that a residual line width will be
observed. Again, if rapid rotation at a particular valueéof
allows the total suppression of the broadening, it follows (using
eq 4.27) that

for a fixed 6 value.
The second-order shift under rapid rotationéafor each
crystallite’s orientation is then given by

@0 -4
092112= Corp 1t wp ) :l:r,{“ =G, (4.29)
4 4
C_1/2,12(D(a.,f) sin” 6 + E(e.,f) cos 6 + with C, being a constant independentfUsing eq 4.13, one
F(aB) sin’ 0 cos 6) (4.23) obtains the following equation:
C_112112is given in eq 2.15. Fo# = &y, (that is, MAS), eq U(6) cos’ B — (1/2)V(6) cos =0 (4.30)
4.23 becomes ith
wi

4= C_ypo 1/2{[21/16_(7/8)77Q(005 ) +
(7/48))57(cos )7 cos' B + [~9/8+ (1/12)y” +
ng(cos 1) — (7/24y17(cos 2u)’] cos’ B + [5/16 —

(1/8)pq(cos 2u) + (7148147 (cos )]} (4.24)

u(9) = (1/2)36)
V(0) = 15cod 0 — 12 cod 6 + 1= (3/16)36) +
(1/16)T(0) (4.31)

S(0) andT(0) are given by egs 4.15. As eq 4.30 must be valid
Equations 4.23 and 4.24 are in agreement with those proposedor everyj3, & must fulfill U(8) = V(0) = 0 and@ < [0,9C°].
in the literature?> Again, it should be noted that they are derived U(#) = 0 implies 6+ = 30.56 and - = 70.12. V() = 0
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implies cosf = (6 + v/21)¥2/15 or 6, = 32.87 andf- =
72.09. It follows that no rotation at a giveé allows the total
suppression of the dipolar interaction. It can further be noted
that

U(0) = 4P,(cos0)
V(6) = (24/7P (cosh) + (4/7)P,(cosh)  (4.32)

P2(cos0) andP4(cosh) are defined by eqgs 4.18. The situation

presented here is therefore strictly analogous to that presented

above and related to the—(/2,1/2) central transition of
quadrupolar nuclei.

5. Dynamic-Angle Spinning, Dynamic-Angle Hopping and
Double Rotation

It has been demonstrated theoretically and experimentally,

in the late 1980%7-1° that the total suppression of second-order

Bonhomme and Livage

= 90 (as the following quantity is now independent®)f one
obtains immediatly

(w(—zi'/%nl,l/z"' kw(—zi'/ezgz,m)/ (1+Kk) = (1/5C 151, (5.5)

High resolution is attained and the isotropic shift is given by
(e =10)

w (72%/';01/2 = 5)C71/2,1/2 =
4 3Cq P
300, |22 — 1) [I(I +1)—3/4] (5.6)

It was first demonstrated by Gann and co-worRérhat
continuous rotation of samples around thg @2) DAS angles
is not necessary. Regular “hops” & and 6, are indeed
sufficient. We follow our approach of surfaces averaging (see
Section 4). Rapid rotation implies averaging of trigonometric

broadening was actually possible. Rapid rotation around two terms, leading to the integralls (see eq 4.2) withr(+ s) < 4.

axes at particular angled and 6, (that is DAS) yields a 2D
correlation. One dimension is related to the “isotropic” dimen-

sion and in this sense, high resolution for quadrupolar nuclei is

attained. Each DAS angles pair is connected to a factehich
connects the time at; and the time ab,. In connection with

the DAS experiment, another experimental scheme was pro-

If averaging is possible by discrete regutethops” of the rotor
at a given angle, then one must fulfill the following equations:

ool e o+
l o= 1/pz0 cody + o—|| |sinly + a—]|| (5.7)
= p p

posed for the total suppression of second-order broadeningsq, every £, ) and everyy. Simple trigonometric calculations

effects??-21the double-rotation of samples. A small inner rotor
(rotor 1) is rotating in a rotating outer rotor (rotor 2). For
particular values of); (the angle between the inner and the outer
rotor) andde (the angle between the outer rotor 8yl isotropic
lines are obtained for each distinct crystallographic site.

We give now a pictorial representation of the DAS experi-

show thatp = 5 corresponds to the minimal value. The
successive “hops” of the rotor describe a regular pentagon.
Generally, 10 orientations of the rotor are thus necessary for a
given (@1, 02) DAS angles pair (five positions & with 72°
increments and five positions @4 with the same increments).
However, the minimum number is six. Indeed, #ar= 0°, the

ment. We consider the averaged surfaces presented in Figurepit under rapid rotation corresponds to the intersection of the
10 and described by egs 4.3 and 4.4. The intersections of thes%taticfourth—degree surface (as 6§ = 0°, the rotor axis and

surfaces in the Bdirection atf; and 0, are given by eq 4.7

and lead to twou(f},gzll,2 and w(fi’,g;l,z values. For a givend,

02, K) set, and if high resolution is attained, the following
equation must be fulfilled:
(£r, Y% + K, Y =, (5.1)

C; being a constant independent/fUsing eqs 4.134.15, it
follows that

(27/16)5(6,) + kY6,)] cos’ B — (3/16)[T(H,) +
kT(6,)] cosp =0 (5.2)

S0) andT(0) are given by eqgs 4.15. It follows that
S6,) +kS6,) =0
T(6,) + kT(6,) =0

(5.3a)
(5.3b)

This system can be analytically resolved, leading to
0,= arcco{1

2\/R 1/2
3 ]

142X
-~ 12
92 = arcco{m]

NG
15vk
4/5=k=5 (5.4

These analytical solutions are in agreement with those
proposed in the literatu®.Using eqs 4.4, 4.8, and 5.4 apd

B, are collinear). It follows that one position & = 0° and
five positions at), = 63.43 are sufficient to fulfill the criteria

of a DAH experiment. In their original work, Gann and co-
workers used the (0 63.43) pair for sensitivity consider-
ations?®’ It is interesting to note that this hopping averaging
procedure is an extension of MAH, devoted to first-order
interactions®® In this particular caser(+ s) < 2 (see ref 10
for a pictorial representation of MAH).

Finally, averaged surfaces related to a DOR experiment can
be obtained. As stated above, the criteria for high resolution
lead to a system of equations involvidgandfe. This system
can be analytically solved, leading to the vario@s @) angles
pairs. They correspond to roots Bf(cos ) andP4(cosf).35:39

6. Multiple-Quantum Magic-Angle Spinning and
Multiple-Quantum Variable-Angle Spinning

In Section 5, we have presented a pictorial approach of DAS,
DAH, and DOR experiments. In particular, we have shown that
the exact calculation of the second-order isotropic shift could
be easily derived, by using averaged fourth-degree surfaces.
However, DAS and DOR remain demanding experiments, as
special probes (including for instance rapid rotation axis flipping
in DAS or mutual rotation of two rotors in DOR) are required.
Moreover, spin dynamics considerations or appearance of
numerous spinning sidebands have limited so far a “routine”
use of these experiments. However, the concept of DAS and
DOR was very fruitful. Indeed, it was demonstrated that for
the total suppression of second-order broadening, a second
degree of freedom is needed (in contrast with MAS, which
involves rotation around a single axis). Recently, Frydman and
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0 ae32= C¥—(318) sirf By(7 cog B, + 1)] + 3w,
(6.5)

We focus first on the geometrical terms involvifigin eqs

6.2 and 6.5. A representation of?)53)3is given by egs 2.19,

2.21 and Figures-34. A direct representation @5%5%5>%is

then given by the fourth-degree surfaces

-+ YI)BZ2+ (X*+Y)] =41  (6.6)

Obviously, one of these surfaces is imaginary. These equations
are of revolution with theZ axis as the axis of revolution. The
surface corresponding t6(3/8)(X2 + Y3)[8Z2 + (X2 + Y?)] =
— —1is presented in Figure 12, as well as the intersection of the
surface by any plane containing tlzeaxis. The sign— is
emphasized. The second step in the description of the MQ-MAS
- experiment is the transformation of the surfaces described above
A - under rapid rotation. For the central transition, averaged surfaces
(3/\8)'1/4 are given by eqs 4:34.4. Following the procedure described
in Section 4, the averaged surfaces corresponding to the triple-
guantum coherence are then given by

3/2 2 2\2 3/2 4
Figure 12. (a) Pictorial representation of the triple-quantum coherence A5 X+ YR) T BogpaZn T
(I = 3/2) corresponding to the equatiern(3/8)(X? + Y?)[822 + (X2 + C:i/g/z 3IZZR2(XR2 + YRZ) =+1 (6.7)
Y?)] = —1 (eq 6.6,70 = 0). TheZ axis of the PAS corresponds to the '
axis of revolution and to an asymptote. (b) Section of the surface by with
any plane containing thg axis. The sign— is emphasized.

co-workers have demonstrated theoretically and experimentally A%, 5= (3/64)(21 co$p — 18 cod B — 11)

that the total suppression of second-order broadening was

possible by using a standard MAS préBé3The second degree B¥2, 4= (3/8)(7 cod f — 6 cod f — 1)

of freedom is chosen in the multiple-quantum coherences of '

the quadrupolar energy levels system. The MQ-MAS experiment Ceilg/z,s/z: (3/8)(-21 c0§ﬁ +18 c0§,8 —5) (6.8)

had a great impact in the field of quadrupolar nuclei. To our
knowledge, more articles involving the MQ-MAS experi- g corresponds to the angle betweenZrexis of the quadrupolar
men¢22340 were published during the last three years than pag ang theZx axis of the rotor. Under rapid MASI(= )
articles dealing with DAS or DOR (over a decade period). We e corresponding shifts are derived and correspond to the

propose now a pictorial representation of multiple-quantum jntersections of the surfaces described above ifBgirection.
(MQ) transitions and MQ-MAS experiment. At first insight, it

seems rather difficult to illustrate the MQ coherences. If these —4 — - 4

illustrations are found, the MQ-MAS experiment will then be (& )_1/2'1_'2 Alp) s & + B() cos G +

interpreted in terms of correlation between the MQ transitions C(B) sir &, cos &, = (419)A(B) + (1/9)B(B) +

and the (1/2,1/2) transition. In the following, the= 3/2 and (2/19)C(B) (6.9a)
| = 5/2 cases will be treated in detail. Let us suppose First a3 a2 4 3 .

3/2 andzyo = 0. The expression of the central transition shift (£Fz ) =32,32= A 32,3281 &+ BZ3552€08 &y +

involving second-order effects is given by eq 2.14 Cei%/z,g/zSirF £, coé ¢, = (4/9) Aei/;z,s/z + (1/9)B?1’§,2'3,2 +
0®}535= C-1101,4(3/8) ST (9 c0S B, = 1)] + e (2/9)C%5, 1, (6.9b)

(6.1) A(B), B(B), and C(f) are given in eqs 4.4. The MQ-MAS
C-112112is given by eq 2.15. In eq 6.1, we introduce explicitly experiment can be interpreted as an evolution uma{@r,%"g,z
wes Which includes the “true” chemical shift of the considered followed by an evolution duringe under &, If high

nucleus. Considering= 3/2, eq 6.1 can be rewritten as resolution is attained, the following equation must be fulfilled:
w(fz%/sztalt/lgz C¥4(3/8) sirf B,(9 co$ B, — 1)] + w5 (6.2) (irﬁﬂ)i/g/z,s/z"’ te(ir[;“)fl/z,llz: Cs (6.10)
c¥_ _ ﬁZ 3Cq |2 6.3) with Cy4 be_iz]gelza constant independent 6f It follows that
w. 21121 - 1) ' NP £ 15 ) 32,32+ telErs™)-1224 = 0 Or

We now decide to describe the triple-quantum coherence by (7/24)(%, — 7) cos 8 + (1/8)(7— 9t)cosp=0 (6.11)
the following equation (using eqs 2.5):
_ Equation 6.11 is fulfilled for everg if te = 7/9. In other words,
0= YED), — EZ) + 30,  (6.4)  an echo coded by an isotropic shift is obtained tior= 7/9.
This is a direct representation of the MQ-MAS experiment. It
Inserting the constan®®? one obtains is crucial to note that we have illustrated in this case the so-
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called 3Q) echo (this notation is now usual in the literattije the casd = 5/2. Again, the central transition is characterized
Indeed, it corresponds to the differend&?,, — EZ)) (see eq by
6.4) andnot to the opposite. IFEZ) — E,,) is used, eq 6.11

is slightly modified and becomes 0 535= C*?[(3/8) sirf B9 cos B, — 1)] + w,s (6.17)
2
(49/3+ 21t) coS B + (1/8)(7+ At)cos f=0  (6.12) cse_ _167° [ 3Co (6.18)
3w, |22 - 1)

Equation 6.12 is fulfilled for every if te = —7/9 (i.e., in the
“negative” time domain). The constar@; can be readily  Using eq 2.5, the triple-quantum coherence (corresponding to
calculated for a particular value gf(that is,3 = 90°) by using (+3Q)) is then given by
eq 6.10 and. = 7/9. One obtains )

e OB = R ED — B — 30, (6.19)

3/ 27*| 3Cq | (2).is0
c¥c, = (4/9y_— 22 -1| - —(20/9w 351, (6.13) We note that this equation corresponds to the opposite of eq
© 6.4. Indeed, the+{3Q) coherence is involved here. Inserting

. 5/2 i
(@%)5%,is given by eq 5.6). It is important to note that eqs 6.2 the constanC>*, one obtains

and 6.4 contain some terms involving the true chemical shift () static,5/2_ ~5/2 : : _
wes This contribution can be easily described by the following W312-312 C**[(27/32) st B(sirf B,

surfaces: (16/3) cod 8,)] — 3w, (6.20)
0+ Y +22=1 (6.14a) A representation of the geometrical partaf}*%s>?is then
given by
Bw, P+ Y+ Z72?2=1 (6.14b)

(27132)% + Y)[—(16/3)22 + (X* + Y] = +1  (6.21)

as (%) = wesand (%) = 3w.s, respectively. The eqs 6.14a Und id rotation. th fi b
and 6.14b correspond to surfaces having the shape of spheres nder rapid rotation, these equations become
of radius e 4 and (3ve) Y4 (We supposevcs > 0). They AS/2 %2 4 y2)2 + B5/2 4y
are invariant under rapid rotation and the evolution under the - ) +3/2’723'/22 . ,
three-quantum coherence followed by the single-quantum coher- CYo 3 (X + Y2 = £1 (6.22)
ence is thus given by .
with
3w+ tw..= (349w (6.15)
e °S A3 s = (3/256)(171 cobp — 78 cod B — 21)

assuming that, = 7/9 (see above). It follows that the attained ,
isotropic shift (when performing a MQ-MAS experiment) Bi§,2,,3,2 = (3/32)(57 co$ — 66 cod § + 9)
contains two terms:

o103 o0 CY2p_a=(3/32)~171 cod p + 138 cod § — 15) (6.23)

W33 = (2009215 1, F (34/9)wes  (6.16) _ _
When 6 = ¢, the shifts are given by

This formula is in agreement with that proposed in the 4
literature?! Other equivalent formulas can be found in the (5 -1212= (AI9APB) + (L/9B(B) + (2/9)C(B)
literature?® It has thus been demonstrated that simple fourth- (6.244a)
degree surfaces are able to illustrate the main results of the MQ-
MAS experiment. At this stage, several comments can be made (1, %73, 5, = (4/9AYZ, 5, + (1/19)BYZ, oo +

The MQ-MAS experiment is comparable to the DAS experi- (2/9)05/2 (6.24b)
ment. However, in DAS, the second-order isotropic shift ( +3/2-312 1+
(2),iso

w119 IS analytically obtained afteweightingof the shiftsat  (see eqs 4.4 and 6.9). The condition for high resolution is given
61 and6-, ((01, 62) corresponding to a DAS angles pair) (see eq by (irﬂ-4)i/§/2_3/2 + to(£r5 %1212 = Cs, With Cs being a
5.5). On the contrary, the derivation of the second-order shift .o ciant ‘It leads to the foIIowing equation:

in MQ-MAS (0%)5%%) does not involve any weighting (see

eq 6.10). This proves that DAS and MQ-MAS are not strictly 2(—133/64+ (21/16}) co?ﬂ +

analogous. Anyway, both methodologies lead to a 2D experi- (57/32— (9/8)t,) cosf =0 (6.25)
ment involving an isotropic and an anisotropic dimension and ’

are comparable in this sense. Second, eq 6.11 shows that the\,, oho occurs at = 19/12. The constariis is then calculated
only echo containing an isotropic information is obtainedtfor ¢, = 90°. One obtains

= 7/9. The location of other echoes is predictédiut they

cannot contain any isotropic information as shown by eq 6.11. 5o 2
Finally, it is rather surprising to note that the triple-quantum €™ Cs = —(8/9) -
coherence can be illustrated by the simple difference of the ©
corresponding energy levels (see eq 6.4). In particular, the aq stated above (eq 6.15),

quantity (3vcg is involved. It is crucial to note that this term

does not correspond to an irradiation abgBbut irradiation at —3we T tws= —(17/12)w (6.27)
wo. Nethertheless, (. andwcsallow us to derive the shift of

the true chemical shift (see egs 6.15 and 6.16). We now turn toassumingte = 19/12. The attained isotropic shift is therefore

3CQ ’ (2),iso
aa - ~ OOz (6:26)
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TABLE 3: Principal Features for the Representation of Multiple-Quantum Transitions and the MQ-MAS Experiment?

I = 3/2 C32=_2n%a,)€ |1 =7/2 2= ~(10n2w,) €
-30 +30
% = ~(3/8) sin2B,, (8cos2Botsin?Po) + 3ames/CH2 (u)i[3 = (3/40) sin2B, (-88c0s2Bo+13sin2B,) — 3w/ C72
\~(3/8) (X2+Y2) [8Z2+(X2+Y2)] = 1* L(3/40) (X2+Y2) [-88Z2+13(X2+Y2)] = % 1
A_3 = (3/64) (21cos*P~18cos2p-11) A3 = (3/320) (303cos*B-150c0s2B-49)
B_3 = (3/8) (Tcos*B-6c0s2B-1) B.3 = (3/40) (101cos*B-114cos?(+13)
C-3 = (3/8) (-21cos*B+18cos2f-5) C43 = (3/40) (-303cos?B+246c0s2P-31)
(te=719 (1o = 101/45
LB = ~(20/9) 50 + (34/9) e L0589 = (4/9) wiso - (34/45) s
I = 5/2 C572 = —(16/3)mo) € +50
+30 (u)ils = (1/8) sin2Pq (-24c0s2Bo+9sin2Pe) — Swes/C7/2
[ 035 = (27/32) sin?Bo (~16/3 cos2Bo +sin2B,) - 3ws/C52 L(1/8) (x24+Y2) [-247249(X2+Y2)] = £ 1
\(27/32) (X24+Y2) [-16/3 Z2+(X24+Y2)) = £ | Ass = (3/64) (33cos*P-10cos?p+1)

Bs = (3/8) (11cos*B-14cos2B+3)

Az = (31256) (171cosB—T8cos2B-21) Cos = (3/8) (-33costfb26c082B1)

B3 = (3/32) (57cos*B-66c0s2B+9)

Ca3 = (3/32) (~171cosdP+138c0s2B-15) (te=1109 .
(o= 102 L2 = (20/9) wise - (34/9) 1
o =smose-wmnes )
-5Q -70
(mi‘s = ~(15/32) sin2B, (16 cos2Bg +sinPy) + Swee/C32 (mi% = —(1/5) sin2B, (63c0s2Bo+21/8 sin2Py) + Twes/C7/2
k—(15/32) (XZ4+Y2) [16 Z2H(X2+Y2)) = + 1* \—(1/5) 0C2+Y2) [63Z2+21/8 (X2+Y2)] = £ 1*
A_s = (3/256) (225c0s*B~170c0s2B~95) A_7 = (3/320) (483cos*B—-350c0s2B—189)
B_s5 = (3/32) (75c0s*B-70c0s2p-5) B_7 = —(3/40) (-161cos*B+154c0s2B+7)
C_s5 = (3/32) (=225cos*B+190c0s23—45) C_7 = (3/40) (-483cos*B+406c0s23~91)
(te=25/12 [te = 161/45
kmi_sg’ =—(25/6) 01 + (85/12) s kmi_%" =—(56/9) @ISO + (476/45) wcs
I = 9/2 (9% =—(16n2m,) ¢ +7Q
+30Q (mi‘7 = (21/16) sin*Bo — Te/CH2
[ 035 = (1/32) sin2B (~240c052Bo+33s5in2B0) — 3mes/CO12 \@1/16) (X2+Y22 = 2 1%
\(1132) (x2+Y2) [-24022433(X2+Y2) = £ | Ay7 = (1/128) (63cos?B+42c0s2B+63)
A3 = (1/256) (819cos*B—414cos2B—-141) B.7 = (21/16) (cos*B~2cos2B+1)
B3 = (1/32) (273cos*B-306c0s23+33) Cy7 = (1/16) (-63cos*P+42c0s2P+21)
Ca3 = (1/32) (~819cos4B+666c0s2B-87) (te=7/18
(1e=91/36 Lo = (35/9) wiso — (119/18) ws
L0 = (5/18) wise — (17/36) wes
+50 -90
(035 = (1/32) sin2Bo (=240 cos2Bo +45sin2Bo) — Swes/CH2 [ % = ~(9/16) sin?fo (32c082Btsin2o) + Sy CY2
\(1/32) (X2+Y2) [-24072445(2+Y))] = % 1 \~5r16) (x2+Y2) [32Z2+(X2+Y2)] =+ 1%
Ays = (1/256) (855c0s4B-390c0s24-105) A-g = (1/128) (837cos*B~594cos2P-~315)
Bys = (1/32) (285c0s48-330c0s2B+45) B = (1/16) (279cosB~270c0s23-9)
Cys = (1/32) (-855c0s4B+690c0s2P-75) C_g = (1/16) (-837cos4B+702co0s2p—-153)
[te=95/36 (te=131/6
k(ﬂifg = (25/18) ©is0 — (85/36) (s km‘fg =—(25/3) wisO + (85/6) wcs

aFor clarity: e = [3Co/2I(2! — 1)]? related to the consta@="2; o, = (0X5e"?)/C'=1, related to the “static” fourth-degree surfacasi,
= A2 (as well as forB.m and C.m), related to the averaged fourth-degree surfaces under rapid rotatis; WD 2, related to the
quadrupolar isotropic shifp’s® = w(,zi'f‘z‘?l,z related to the quadrupolar isotropic shift of the central transiigrorresponds to the true isotropic
chemical shift. * indicates that one of the considered surfaces is imaginary.

given by w(_Z%,/sZt:aSt/i(Z:,Slzz

. : C¥—15/32 siff B(sir? B, + 16 cod B,)] + 5w (6.30

oY= (6160~ (1712, (6.28) [ PSP pol + 50 (630
A geometrical representation is given by

As | = 5/2, a five-quantum experiment can be performed and

has been indeed demonstrated experimentafpollowing the —(15/32)¢C + YA[16Z° + (X*+ Y] = +1 (6.31)
procedure cited above, the five-quantum coherence (correspond- o ] ] )
ing to (—5Q)) is given by One of these surfaces is imaginary. Under rapid rotation, these

equations become
2),static,5/2__ 3 —1/(2 2
w(—%lszt%t/lg =h (E(—%lz - E(5,%) +50,  (6.29) Asl/_rz,/z +5/2()(2 + Y22 + Bi/é/z Al

/ _
Inserting the constar®®? (eq 6.18), one obtains Cié/z,ﬁ/zzz(xz +Y) =1 (6.32)
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1=32 -30*

I1=5/2 +3Q

1=7/2 +30 +5Q -70*
1=9/2 +30Q +50 +70*

Figure 13. Representation in the PAS of the multiple-quantum coherences for eveny2 value 6 = 3, 5, 7, 9). When possible, the equation
is used. *One of the corresponding surfaces is imaginary.

with One of these surfaces is imaginary. The other one has the shape
- of a cylinder of revolution (with th& axis of the PAS as the
A2, e = (3/256)(225 cof — 170 cod f — 95) axis of revolution) but corresponds actually to a fourth-degree
surface.
B®2 2152 = (3/32)(75 codp — 70 coé g — 5) As a conclusion, we have shown that the abstract notion of

multiple-quantum coherence as well as the MQ-MAS experi-

c52 = (3/32)(-225 co§ﬁ +190 co§ﬁ 45) (6.33) ment can be safely illustrated by fourth-degree surfaces. In
S/2:+5iz particular, the isotropic shifts on the F1 dimension (F2 corre-

Transposing egs 6.24, the condition for high resolution is SPONds to the anisotropic dimension) were derived easily. It is

obtained for interesting to note that the “static” energy levels (eqs 2.25) are
just needed for our pictorial approach. Moreover, the representa-
2(—175/64+ (21/16},) co§ﬁ+ tion can be extended to the MQ-VAS experimé&htyhich

involves® = & (0 corresponds to the angle between the rotor
axis andB,). Such a representation uses mostly the coefficients
1=n/2 1=n/2 |=| . .
The echo occurs dt = 25/12. One obtains consequently A5 iz Biva#mizs Comyam Given in Table 3. The casds
=5/2 and I= 3/2 ((+3Q) and (3Q) coherences, respectively)

(75/32— (9/8),) cosf =0 (6.34)

5 2 ) are treated as examples. Fb# {y andl = 5/2, egs 6.9 give:
c2cy= (40/9)— 5 2| = —(25/6w%)5°, (6.35)
( 1 (&5 Y1 010= AB) sin' 6 + B(B) cos' 0 +
with (£r57%)%2 5 52 T te(£r5%)-1212= Cs (Cs is a constant). C(p) sirf 6 cos 6 (6.38a)

The attained isotropic shift is then given by nS20 6/
(Frg )isi2-32= Als-32 sin' 6 + B+3/2 _3,C08 6 +

oG55 = — (25160437, (85/12);  (6.36) C2, 4,si? 0 cog 0 (6.38b)

Our pictorial approach of the MQ-MAS experiment can be
extended to every = n/2 (n = 3, 5, 7, 9) spin and to every
order of coherence. All needed parameters are presented in Table

3, including (i) the constanC'="2, (ii) the expression of
(2),staticl=n/2

If high resolution is attained in one dimension, the following

equation must be fulfilled:
: £1, 5 e+ (£ 1= 6.39
Qs for m e [3,n], (iii) the equatlons of the surfaces (s Visz-an T 6@y )a1e=Cr (6:39)
(2),staticl= n/2

l=n/
cclnngected 0wz iz (iv) the coefficients AZTZ . (C; being a constant). By using the derivation of eq 6.39, one
Bz rmz Comazrm2 related to the averaged surfaces under gptains

rapid rotation, (v) the derived time for ectig and (vi) the
attained isotropic shifty @5 7%’. The involved surfaces are  (—420 co$ 6 + 360 cod 6 — 36}, =

presented in Figure 13. One particular feature is related to the _ _

(+7Q) transition forl = 9/2. Indeed, the equations of the static 665 co8 0 + 570 co$ ¢ —57 (6.40a)

fourth-degree surfaces are given by (540 cod 6 — 408 col 6 + 28)t, =
(21/16)° + Y?)?= +1 (6.37) 855 cod 6 — 630 cod 6 + 39 (6.40b)
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This system can be solved in terms &f @) and one obtains (
tim = 19/12, &) corresponding to the MQ-MAS experiment
and (#77°? = 15/8, 6, = 70.12), (t%73°%¢ = 15/8,0, =
30.56). One can note thal; and 9, are roots ofP4(cos 6).

The case = 3/2 can be treated following the same procedure.
The obtained system of equations is then

(—315 co8 6 + 270 co§ § — 27}, =
—245 cod 0 + 210 cod 6 — 21 (6.41a)

(135co8 6 — 102 cod 6 + 7)t, =
105 cod 0 — 90 cod 6 + 9 (6.41b)

The solutions of egs 6.41 aré"(z 7/9, &m) corresponding to
the MQ-MAS experiment and%~"%*? = 0, 9, = 70.12), (
19773956 = 0, 9, = 30.56). For rapid rotation of samples at
012, the echo occurs “immediatly” at§1-2 = 0. This character-
istic feature was first noted by Amouretbin the frame of the
variable-angle spinning for three-half spins (VAST) methodol-
ogy. However, overtone spectroscopy was involved in this
particular case.

The VAST experiment can be illustrated in a different way.
Indeed, forf; = 70.12 or 0, = 30.56, the quantity

~4\3201, _ A312 L4 302 4
(Ers )Z3252= Alg,328IN" 01 5+ BZ353,C08 6, ,+

C¥%, 328 01,05 0, ,
is independent gf (this is shown by using eqgs 4.18b and 6.8).

In other words, high resolution is obtained for this transition
under rapid rotation afl; or 6.
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(b)
54.74°

Figure 14. (a) Pictorial representation of the MQ-VAS experiment (
= 3/2,6 = 70.12). The obtained 2D maps correspond to a correlation
between a @ and a & dimensions. (b) Whefl = 54.7£, a straight
line is obtained and corresponds to the MQ-MAS experiment (ref 43).

4.4 and 6.76.8, the corresponding averaged surfaces are
derived. For the central transition,

A(ﬂ)(XRZ + YR2)2 + B(ﬂ)ZR4 + C(ﬂ)ZRZ(XRZ + YRZ) =+1
(6.44a)
N(eB) (X" + Y2 + O(a)Z" +
P(oLB)Z2(X2 + Yo = 1 (6.44b)

Moreover, it can be noted that an MQ experiment involving With
61 or 02 implies the total suppression of second-order broadening
but allows the reintroduction of CSA and/or dipolar effects (as N(o.,8) =
012 # Cm). Such experiments are interesting for the precise
determination of coupled interactions and were recently imple-
mented successfulli?.

Let us consider ah = 3/2 nucleus, whose CSA parameters
arew11, wyy, andwss (principal components in angular velocity
units). Moreover, we suppose that the CSA and quadrupolar
PASs are coincident andj > 0 (i = 1, 2, 3). Following the
derivation of egs 2.23 and 2.25, surfaces accounting for the
second-order quadrupolar broadening and CSA under staticP(e,f) =
conditions are obtained. For the-1/2,1/2) central transition

2008 Alc0g i, — ) + g5 — ) —

co¢ 0wy — Wyp) + w1 + w33

O(0.,B) = cog B[cos awyy — wyy) + Was — Wy +
cos awy; — w,y) + W,y

%{Co§ﬁ [COS 0 (wyy — W1y) + Waz — Wy +

coS o (w1, — Wyy) + W1y + 2wy + w45} (6.45)

(38)C+ Y)[8Z2 — (X*+ Y)] = +1  (6.42a) _
For the triple-quantum coherence,

corresponds to the second-order quadrupolar broadening (see
3/2 2 22 3/2 4
€q 2.19). AT dXR™ T YR) T BI3nadr T

32 2y 2 2 _
0 X+ 0 Y 4 w5 Z* + (g + wy0) XY+ Clapadr XR"+YR) ==+ 1 (6.46a)

(01 + 0XZ + (0 + 03 Y2 = £1 (642D)  zrna By X2+ Yid)? + O B)Z4 +

corresponds to CSA. For the triple-quantum coherence, P(a,ﬁ)sz(XRz + YRZ)} =+ 1 (6.46b)

—(3/8)0C + Y)[8Z* + (X + Y)] = +1 (6.43a) The MQ-VAS experiment can be understood as a 2D correlation
between the central transition and the triple quantum coherence.
Using eqs 6.456.46,{ (+ra5 ) Y202, (£ras )", .3 cor-
responds to a point in a 2D magi(= 70.12, 6, = 30.56).
Such a correlation map fa#; = 70.12 (in arbitrary units) is
presented in Figure 14a and is analogous to those presented by
Wang and co-worker€

When 0 = &, (Figure 14b), the map is particularly simple
corresponds to CSA. Under rapid rotation and using egs 4.3 and corresponds to a straight line. In this case, the correlation

corresponds to the second-order quadrupolar broadening (se
egs 6.5-6.6).

3{(011X4 + a)ZZY4 + a)3324 + (v, + w22)X2Y2+
(01, + 03)XPZ% + (w5 + w39 Y27} = +1 (6.43b)
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CHART 1
adyg (cos c.cos B cosy—sinasiny) {(—cos acos fsiny—sinacosy) (cosasinf)
P=|b e h| = |(sinacospcosy+cosasiny) (-sinacosfsiny+cosacosy) (sin asinp)
c fi (-sin B cos y) (sin B siny) (cos )
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