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4 Place Jussieu, 75252 Paris, Cedex 05, France

ReceiVed: July 14, 1998; In Final Form: October 28, 1998

The representation of second-order broadening effects in solid-state NMR by general fourth-degree surfaces
is presented. Static second-order quadrupolar and “dipolar-quadrupolar” interactions are treated in a unified
way. Most experiments involving the fast reorientation of samples such as magic-angle spinning, variable-
angle spinning, dynamic-angle spinning, and double-rotation and multiple-quantum magic-angle spinning
are also illustrated by using averaged fourth-degree surfaces. The equations of the surfaces are derived
analytically and allow the derivation of most results concerning these experiments. This article is an extension
of the representation of the first-order effects by quadrics to more complex broadening effects. Multidimensional
experiments will also be discussed in this frame. It can be noted that this approach is essentially Cartesian.
P2(cosθ) andP4(cosθ) Legendre polynomials are not explicitly used in this work.

1. Introduction

Anisotropy is a common feature in solid-state NMR in the
presence of a strong magnetic fieldBo. Indeed, all internal
interactions at a given nucleus, such as chemical shift anisotropy
(CSA), homo- and heteronuclear dipolar coupling, and quadru-
polar interaction (if I > 1/2), are characterized by their
anisotropy, giving the “strength” of the considered interaction.
This leads to broadened patterns (in the frequency domain), such
as lines subjected to CSA,1 Pake doublets2 (dipolar), first-order
quadrupolar satellites,3 and central transitions broadened by
second-order quadrupolar effects.4 Two more quantities can be
defined to fully characterize a given pattern: the asymmetry
(η), which governs the “shape” of the line, and the isotropic
value of the interaction. This isotropic value is obtained
(neglecting solvent effects) in liquid-state NMR. In this case,
the average of the interaction is directly measured. All internal
interactions can be described by second-rank symmetrical
tensors.5 First-order interactions can be well represented by the
so-called “representation ellipsoid”. Indeed, the interactions can
be described by second-degree polynomials, involving classical
trigonometric functions. The intersection of these ellipsoids in
the Bo direction gives directly such polynomials. The “repre-
sentation ellipsoid” is used in the frame of solid-state NMR6

but more generally in physics.7 A given tensor is characterized
by three principal components and three angles (Euler angles),
which orient the considered principal axes system (PAS). In
the PAS, the tensor is diagonal. It is well-known that the
“representation ellipsoid” implies that the three principal
components are strictly positive. When one (or more) principal
component is negative (or zero), the “representation ellipsoid”
fails. Several authors8,9 used recently a more complex repre-
sentation involving ovaloids. We have shown in a previous
article10 that the “representation ellipsoid” could be extended
to generalized quadrics (including cylinders, hyperboloids, and
planes), accounting for every set of principal components. In
this approach, only second-degree surfaces are considered
(ovaloids correspond to sixth-order surfaces). When a given
interaction is comparable to the Zeeman interaction, second-

order effects are predicted and first-order perturbation theory
fails. In this case, fourth-degree trigonometric polynomials are
involved.11 It is then obvious that quadrics cannot represent
correctly such effects.10 We shall demonstrate in this article that
static second-order shifts of lines can be safely illustrated by
general fourth-degree surfaces. The equations of these surfaces
in the corresponding PAS are derived analytically.

When several lines are present, the obtained spectrum is
generally featureless, accounting for anisotropy of the different
interactions. Resolution is therefore usually low for static
powders. Nethertheless, it was shown in the late 1950s12,13that
macroscopic reorientation of samples at a particular angle (θ
) úm ) 54.74°) could average first-order interactions, leading
to high-resolution spectra.θ corresponds to the macroscopic
angle between the rotor axis andBo. The magic-angle spinning
(MAS) technique is now widely used, and very rapid rotation
speeds (up to 33 kHz) are attained. We have shown that the
effects of MAS and variable-angle spinning (VAS, withθ *
úm) on first-order interactions could be graphically interpreted
by using averaged quadrics.10 This representation is very simple,
as standard Cartesian transformations (involving 3× 3 matrixes)
are necessary. The noncontinuous version of MAS (magic-angle
hopping or MAH) was illustrated as well.

It is well-known that rapid MAS cannot totally remove
second-order broadening effects.14-16 In the late 1980s, more
complicated reorientation schemes of samples were imple-
mented. The dynamic-angle spinning (DAS)16-19 and double-
rotation (DOR)20,21of samples allow indeed the total suppression
of second-order effects. These techniques were developped
especially in the frame of half-integer quadrupolar nuclei (the
central transition (-1/2, 1/2) being actually under investigation).
Recently, a novel scheme involving multiple-quantum transitions
and classical MAS was proposed in the literature and success-
fully applied to the study of half-integer quadrupolar nuclei.22,23

This new and appealing technique is now reffered to as multiple-
quantum magic-angle spinning (MQ-MAS). The mathematical
treatment of DAS, DOR and MQ-MAS is now well established
and based on irreducible tensors, Wigner matrixes, and the
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ingenious derivation of Hamiltonians in terms ofP2(cosθ) and
P4(cosθ) (the second- and fourth-degree Legendre polynomi-
als).16,23We shall show that averaged fourth-order surfaces are
suitable for the direct representation of DAS, DOR, and MQ-
MAS. One advantage of this approach is related to its
mathematical simplicity; the Cartesian representation of tensors
and Cartesian transformations of frames (involving 3× 3
matrixes) are the only prerequisites. No explicit reference to
Legendre polynomials will be made. The equations of the
averaged surfaces will be obtained analytically, and most results
concerning the DAS, DOR, and MQ-MAS experiments will be
then easily derived.

In this article, the following plan is adopted. Section 2 is
devoted to the representation of static second-order effects by
fourth-degree surfaces. In this section, the central transition of
half-integer quadrupolar nuclei is mainly investigated. Section
3 deals with the representation by surfaces of the dipolar
coupling between aI ) 1/2 spin and aS quadrupolar nucleus.
In this case, second-order effects are also involved. Section 4
is devoted to the representation of MAS and VAS on second-
order interactions, introducing averaged surfaces. Section 5 is
related to the DAS, DAH (dynamic-angle hopping), and DOR
experiments. The exact derivation of DAS angle pairs is given.
Section 6 is devoted to the MQ-MAS and MQ-VAS (multiple-
quantum variable-angle spinning) methodologies. Averaged
surfaces allow us to derive the main results of these experiments
for I ) n/2 (n ) 3, 5, 7, 9).

The “Solve” routine of Mathematica was sometimes used.
All 3D representations were done by using graphical routines
of Mathematica.

2. Quadrupolar Interaction: Representation of First- and
Second-Order Effects in a Static Experiment

In the presence of a strong external magnetic fieldBo, the
Hamiltonian of a nuclear spin with a quadrupole moment (I >
1/2) can be written6,24

ĤZ corresponds to the Zeeman Hamiltonian, whereasĤQ
corresponds to the quadrupolar Hamiltonian. Moreover, we
suppose thatĤQ can be treated as a perturbation of the
Zeeman interaction. Following Harris,24 the quadrupolar interac-
tion p-1ĤQ (in angular velocity units) may be represented by a
second-rank symmetrical tensor [q], such that p-1ĤQ )
kQI[q]I. kQ adjusts the magnitude and dimension of the [q]
tensor. In the PAS (orXYZ), [q] is diagonal andqii (i ) X, Y,
andZ) are the principal components. In the respective PAS,

Q corresponds to the quadrupole moment of the nucleus and
eqii ) Vii are the Cartesian components of the electric field
gradient (EFG). This tensor in traceless (in agreement with the
Laplace equation, that is,∑X,Y,Zqii ) 0). Therefore, only two
independent parameters are required:

which is related to the anisotropy of the interaction and

which corresponds to the asymmetry, using the convention

Other conventions may be found in the literature.25 The [q]
tensor is not necessarily axially symmetric; that is,ηQ may be
different from zero. To estimate the effects of the quadrupolar
interaction on the line shapes, the diagonal tensor [q]PAS must
be expressed in the laboratory (LAB) frame (XoYoZo), where
theBo direction andZo are coincident. The LAB frame is derived
from the quadrupolar PAS frame by the Euler angles (Ro,âo,γo),
which are presented in Figure 1. The various energy levels
corresponding to eqs 2.1 and 2.2 can be written asEm ) Em

(0) +
Em

(1) + Em
(2) (-I e m e I). The different terms of this expression

can be obtained by using standard second-order perturbation
theory.11 AssumingηQ ) 0,

γ is the gyromagnetic ratio of the nucleus of interest andγBo

) ωo. CQ ) (e2qZZQ)/h is the quadrupole coupling constant.
The first-order quadrupolar shift corresponding to two consecu-
tive levels (m - 1, m) (expressed in angular velocity units) is
then derived.

The expression given by eq 2.6 can be generalized toηQ * 0.

with

For I ) n/2 (n ) 3, 5, 7, 9), the so-called central transition (m
) 1/2) is not shifted by the first-order quadrupolar interaction.
m * 1/2 corresponds to the (2I - 1) satellites. Though eqs 2.7a
and 2.7b are strictly analogous, eq 2.7b allows us to give a
simple pictorial representation of the anisotropy induced by the
quadrupolar interaction.10 As stated above, the tensor [q] is
traceless. It implies that at least two principal components are

ηQ )
qXX - qYY

qZZ
(0 e ηQ e 1) (2.3b)

|qZZ| g |qYY| g |qXX| (2.4)

Em
(0) ) -p γ Bo m (2.5a)

Em
(1) )

3
4

h
2I(2I - 1)

CQ(3 cos2 âo - 1)[m2 - 1
3
I(I + 1)] (2.5b)

Em
(2) ) -hm[ 3CQ

2I(2I - 1)]2 2π
12γBo

{3
2

cos2 âo (1 - cos2 âo) ×

[8m2 - 4I(I + 1) + 1] + 3
8
(1 - cos2 âo)

2[-2m2 +

2I(I + 1) - 1]} (2.5c)

ωm-1,m
(1),static) p-1(Em-1

(1) - Em
(1)) )

3(1 - 2m)

4I(2I - 1)
e2Q
p

1
2
qZZ(3 cos2 âo - 1) (2.6)

ωm-1,m
(1),static)

3(1 - 2m)

4I(2I - 1)
e2Q
p

1
2
qZZ(3 cos2 âo - 1 +

ηQ sin2 âo cos 2Ro) )
3(1 - 2m)

4I(2I - 1)
e2Q
p

qZoZo
(2.7a)

qZoZo
) cos2 Ro sin2 âo qXX + sin2 Ro sin2 âo qYY+

cos2 âo qZZ (2.7b)

Ĥ ) ĤZ + ĤQ (2.1)

kQ[q] ) e2Q
2I(2I - 1)p[qxx 0 0

0 qyy 0
0 0 qzz

] (2.2)

eqZZ ) VZZ (2.3a)
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of opposite signs (they can be eventually zero). As an example,
we assume thatqXX > 0, qYY > 0, andqZZ < 0. Let us define
the following quadrics (second-degree surfaces) in the quadru-
polar PAS.

Equations 2.8a and 2.8b correspond to elliptical hyperboloids
of one and two sheets, respectively. They are represented in
Figure 2. WhenBo is oriented from the quadrupolar PAS by
the Euler angles (Ro, âo, γo), it is located in the plane containing
theX′(Ro) andZ axes (see Figures 1 and 2). The intersection of
the hyperboloid of one sheet (eq 2.8a) by theX′(Ro)Z plane
corresponds to an hyperbola, whose equation inX′(Ro)Z is

This hyperbola exhibits two asymptotes, oriented fromZ by
Ψ(Ro) (Figure 2a). The expression of tan2 Ψ(Ro) is given by10

Assuming thatâo > Ψ(Ro), the radiusr corresponding to the
intersection of the hyperbola in theBo direction is derived using
X′ ) r sin âo, Z ) r cosâo, and eq 2.9. One obtains

When eqs 2.11 and 2.7b are compared, it follows that (+r-2)
) qZoZo. The sign+ is emphasized in this expression as well as
in Figure 2a. Therefore, a simple pictorial representation ofqZoZo

is given. Whenâo f Ψ(Ro), qZoZo f 0, asr f ∞. The zero
value of the tensor componentqZoZo is attained, but in this case,
it does not correspond to a principal component. Whenâo <
Ψ(Ro), the Bo direction does not intersect the hyperbola
presented in Figure 2a. However, one can use the complemen-
tary quadric given by eq 2.8b (Figure 2b). Again, the intersection
of this quadric by theX′(Ro)Z plane corresponds to an hyperbola,
whose equation inX′(Ro)Z is

Using eq 2.12 and assuming thatâo < Ψ(Ro), the intersection
radiusr is then given by

It follows that (-r-2) ) qZoZo. Again, the sign- is emphasized
in this expression as well as in Figure 2b. Whenâo ) 0, (-r-2)
) -|qZZ| ) qZZ and the negative principal component is attained.
It has thus been shown that first-order effects of the quadrupolar
interaction can be represented by two complementary quadrics.
It is interesting to note that in this case, the popular “representa-

Figure 1. Definitions of the Euler angles (Ro, âo, γo) transforming a
given PAS frame (XYZ) into the LAB frame (XoYoZo). (a) PAS frame
is rotated counterclockwise around theZ axis by Ro. This rotation
generates a new frame (X′Y′Z). (b) counterclockwise rotation of the
(X′Y′Z) frame aroundY′ by âo generates a second intermediate frame
(X′′Y′Zo). (c) This second intermediate frame is rotated counterclockwise
by γo aroundZo, resulting in the (XoYoZo) LAB frame. Using these
definitions,Ro andâo represent the polar angles of theBo direction in
the PAS.

qXXX
2 + qYYY

2 - |qZZ|Z2 ) 1 (2.8a)

qXXX
2 + qYYY

2 - |qZZ|Z2 ) -1 (2.8b)

(cos2 Ro qXX + sin2 Ro qYY)X′2 - |qZZ|Z2 ) 1 (2.9)

tan2 Ψ(Ro) )
|qZZ|

cos2 Ro qXX + sin2 Ro qYY

(2.10)

Figure 2. Pictorial representation of anisotropic first-order quadrupolar
interaction forqXX > 0, qYY > 0, andqZZ < 0. Intersections by the
plane containingBo are also given. (a) Elliptical hyperboloid of one
sheet. tan2 Ψ(Ro) is given by eq 2.10. Intersections with theX′(Ro)
axis are given by((cos2 Ro qXX + sin2 Ro qYY)-1/2. Whenâo > Ψ(Ro),
the equation (+r-2) ) qzozo holds. The sign of the first member of the
equation is emphasized. (b) Elliptical hyperboloid of two sheets.
Intersections with theZ axis are given by(|qZZ|-1/2. Whenâo < Ψ(Ro),
the equation (-r-2) ) qzozo holds. The sign of the first member of the
equation is emphasized.

r ) (cos2 Ro sin2 âo qXX + sin2 Ro sin2 âo qYY-

cos2 âo |qZZ|)-1/2 (2.11)

-(cos2 Ro qXX + sin2 Ro qYY)X′2 + |qZZ|Z2 ) +1 (2.12)

r ) [-(cos2 Ro sin2 âo qXX + sin2 Ro sin2 âo qYY) +

cos2 âo |qZZ|]-1/2 (2.13)
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tion ellipsoid”6 fails, as some principal components are negative.
When ηQ ) 0, the surfaces are of revolution, withZ as the
unique axis of revolution. Moreover, when one principal
component is zero, a pictorial representation of anisotropy is
then given by a set of two complementary hyperbolical
cylinders.10 The important point is that second-degree surfaces
(that is quadrics) are suitable for the representation of first-
order effects. We have also shown previously that they are also
suitable for the direct representation of macroscopic reorientation
of samples and that they account for the suppression of first-
order interactions under MAS (assuming that the rotation speed
of the sample is much higher than the involved interactions).

We now turn to quadrupolar second-order effects. The
quadrupolar interaction can be very large, so that the first-order
perturbation theory is not always adequate. WhenĤQ becomes
comparable toĤZ (see eq 2.1), second-order effects must be
taken into account. ForI ) n/2 (n ) 3, 5, 7, 9), the central
transition (-1/2, 1/2) is mainly observed, with the satellites lines
being smeared out over the megahertz range. In the following
sections, the central transition will be mainly considered (except
in Section 6). Using eq 2.5c and assumingηQ ) 0, the second-
order quadrupolar shift of the central line is given by

(omitting ωcs corresponding to the true chemical shift). The
constantC-1/2,1/2 is related to the quadrupole coupling constant
CQ and is inversely proportional toωo as

It is interesting to note that the anisotropy of the central transition
due to second-order effects is represented by the polynomial
Q(âo) ) 3/8 sin2 âo (9 cos2 âo - 1); âo orient Bo from the
quadrupolar PAS (Figure 1). Equation 2.14 can be generalized
for ηQ * 0 as25

with

C-1/2,1/2is given in eq 2.15. Again, the anisotropy is represented
by the polynomialR(Ro,âo) ) A(Ro,ηQ) cos4 âo + B(Ro,ηQ) cos2 âo

+ C(Ro,ηQ). To give a suitable pictorial representation of the
second-order effects on the central transition, one must connect
a surface (or a set of complementary surfaces) with the
polynomials Q(Ro) and R(Ro,âo). Q(Ro) and R(Ro,âo) are
obviously fourth-degree polynomials of the trigonometric func-
tions. It is then evident that second-degree surfaces such as
quadrics cannot be connected toQ(Ro) and R(Ro,âo). Indeed,

they allow only a satisfactory representation of second-degree
polynomials (see eqs 2.7b and 2.11). Novel surfaces must be
considered. The equations of these surfaces in the quadrupolar
PAS will be first derived forηQ ) 0 and then generalized for
ηQ * 0. In the PAS, the relationsX ) r cosRo sin âo, Y )
r sin Ro sin âo, andZ ) r cosâo hold. It follows thatX2 + Y2

) r2 sin2 âo andZ2 ) r2 cos2 âo. The polynomialQ(Ro) can be
written Q(Ro) ) (3/8) sin2 âo(8 cos2 âo - sin2 âo) or

Now, we consider the fourth-degree surface, whose equation
in the PAS is

This surface is obviously of revolution, with theZ axis as the
axis of revolution. It is presented in Figure 3a, as well as the
intersection of this surface by any plane containing theZ axis
(Figure 3b). The intersection curve exhibits two asymptotes,
oriented from theZ axis byΦ ) 0° andΦo (see Figure 3b).Φo

is characterized by tan2 Φo ) 8 or Φo ) 70.53°. The minimum
radiusrmin is obtained forøo. The exact value oføo is obtained
by derivation of the expression sin2 âo(8 cos2 âo - sin2 âo). It
follows thatøo ) (1/2) arccos (1/9) orøo ) 41.81° andrmin )
(2/3)-1/4. Using eq 2.19, the radiusr corresponding to the
intersection of the surface in theBo direction (characterized by
the polar angles (Ro,âo)) is then derived as

ω-1/2,1/2
(2),static) p-1(E-1/2

(2) - E1/2
(2)) )

C-1/2,1/2[38 sin2 âo(9 cos2 âo - 1)] (2.14)

C-1/2,1/2) - 4π2

6ωo
[ 3CQ

2I(2I -1)]2

[(I(I + 1) - 3/4] (2.15)

ω-1/2,1/2
(2),static) C-1/2,1/2[A(Ro, ηQ) cos4 âo + B(Ro, ηQ) cos2 âo +

C(Ro, ηQ)] (2.16)

A(Ro,ηQ) ) -27/8+ (9/4)ηQ cos 2Ro -

(3/8)(ηQ cos 2Ro)
2 (2.17a)

B(Ro,ηQ) ) 30/8- (1/2)ηQ
2 - 2ηQ cos 2Ro +

(3/4)(ηQ cos 2Ro)
2 (2.17b)

C(Ro,ηQ) ) -3/8 + (1/3)ηQ
2 - (1/4)ηQ cos 2Ro -

(3/8)(ηQ cos 2Ro)
2 (2.17c)

Figure 3. (a) Fourth-degree surface corresponding to eq 2.19 (ηQ )
0). TheZ axis of the PAS corresponds to the axis of revolution. (b)
Section of the surface by any plane containing theZ axis. The
asymptotes are given byΦ ) 0° andΦo ) 70.53° (see text).rmin )
(2/3)-1/4 is associated to the angleøo ) 41.81°. The sign + is
emphasized.

r4Q(âo) ) (3/8)(r2 sin2 âo)[8(r2 cos2 âo) - (r2 sin2 âo)] )

(3/8)(X2 + Y2)[8Z2 - (X2 + Y2)] (2.18)

(3/8)(X2 + Y2)[8Z2 - (X2 + Y2)] ) 1 (2.19)
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Equation 2.20b gives therefore a simple pictorial interpretation
of the second-order interaction described byQ(âo); the intersec-
tion of the surface presented in Figure 3 in theBo direction is
directly related to the second-order quadrupolar shift. The sign
+ is emphasized in eq 2.20b as well as in Figure 3. Whenâo

f 0° or Φo, r f ∞ andQ(âo) f 0; the second-order quadrupolar
shift vanishes. Whenâo ) øo, the shift is maximum (in absolute
value), as r is minimum. Obviously, whenâo > Φo, no
intersection is obtained. One can then use the complementary
fourth-degree surface, whose equation in the PAS is given by

Again, this surface is of revolution and is presented in Figure
4a. The radiusr corresponding to the intersection of the surface
in the Bo direction is given by

The sign- is emphasized in this equation and in Figure 4. The
relation betweenr andQ(âo) is now different but remains easy
to visualize. Therefore, the second-order quadrupolar interaction
for the central transition is fully represented by a set of two
complementary fourth-degree surfaces. This situation is rather
similar to that encountered for first-order effects (see above);
indeed, a set of two hyperboloids was necessary for the complete
pictorial description of anisotropy. However, in the case of
second-order effects, two major differences are noted: (i) the
involved surfaces are fourth-degree surfaces and (ii) ((r-4) is
related to the anisotropic shift instead of ((r-2). Finally, it is
possible to relate the powder pattern of the central transition4

in a static experiment and the particular anglesΦo and øo

presented above (Figure 5).
WhenηQ * 0, the anisotropy related to the central transition

is given by the polynomialR(Ro,âo) (see eq 2.16). We consider
the set of two complementary fourth-degree surfaces given in
the quadrupolar PAS by

wherea-f are unknown functions ofηQ for the moment. In the
PAS, the following relations hold:X4 ) r4 cos4 Ro (1 -
cos2 âo)2; Y4 ) r4(1 - cos2 Ro)2(1 - cos2 âo)2; Z4 ) r4 cos4 âo;
X2Y2 ) r4 cos2 Ro(1 - cos2 Ro)(1 - cos2 âo)2; X2Z2 )
r4 cos2 Ro cos2 âo(1 - cos2 âo); andY2Z2 ) r4(1 - cos2 Ro) cos2 âo

(1 - cos2 âo). Inserting these relations in eq 2.23, we impose
moreover that ((r-4) ) R(Ro,âo). After rewriting R(Ro,âo) in
terms of cosine functions, the equation ((r-4) ) R(Ro,âo) leads
to the following system of six linear equations:

This system is easily solved, and the complementary fourth-
degree surfaces are then given by eq 2.23 and

Generally, these surfaces are not of revolution. Sections of these
surfaces by theXZ andYZplanes are given in Figures 6 and 7.
When ηQ ) 0, eqs 2.19, 2.21, and 2.23 are identical. As a
conclusion, we have shown that a direct pictorial representation
of second-order effects on the central transition can be proposed,
using a set of two complementary fourth-degree surfaces. The
analytical expressions of their equations in the PAS have been
given. To our knowledge, such a direct Cartesian representation
of second-order interactions was never proposed in the literature.
It will be seen below that these surfaces are suitable not only
for the direct representation of anisotropy but also for a pictorial
representation of MAS, VAS, and higher-order trajectories.
Before considering the effects of macroscopic sample reorienta-

r ) [(3/8) sin2 âo(8 cos2 âo - sin2 âo)]
-1/4 (2.20a)

(+r-4) ) Q(âo) (2.20b)

(3/8)(X2 + Y2)[8Z2 - (X2 + Y2)] ) -1 (2.21)

Figure 4. (a) Fourth-degree surface corresponding to eq 2.21 (ηQ )
0). TheZ axis of the PAS corresponds to the axis of revolution. (b)
Section of the surface by any plane containing theZ axis. The asymptote
is given byΦo ) 70.53°. The sign- is emphasized.

r ) [-(3/8) sin2 âo(8 cos2 âo - sin2 âo)]
-1/4 (2.22a)

(-r-4) ) Q(âo) (2.22b)

aX4 + bY4 + cZ4 + dX2Y2 + eX2Z2 + fY2Z2 ) (1 (2.23)

b ) -3/8 + (1/4)ηQ - (1/24)ηQ
2

-2b + d ) -(1/2)ηQ + (3/2)ηQ
2

a + b - d ) -(3/2)ηQ
2

4b - 2d + e - f ) -(4ηQ + 3ηQ
2)

-2b + f ) 15/4+ 2ηQ + (1/4)ηQ
2

b + c - f ) -27/8- (9/4)ηQ - (3/8)ηQ
2 (2.24)

a ) -(3/8 + (1/4)ηQ + (1/24)ηQ
2)

b ) -3/8 + (1/4)ηQ - (1/24)ηQ
2

c ) -(1/6)ηQ
2

d ) -6/8 + (17/12)ηQ
2

e ) 3 - (5/2)ηQ + (1/6)ηQ
2

f ) 3 + (5/2)ηQ + (1/6)ηQ
2 (2.25)
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tions, we illustrate with geometrical surfaces the dipolar coupling
of a I ) 1/2 spin to a quadrupolarS spin (Section 3).

3. Pictorial Representation of Coupled Interactions:
Dipolar Coupling to S > 1/2

As stated above, higher interactions involve fourth-degree
expressions of the basic trigonometric functions. Among them,
the dipolar coupling of aI nucleus (I ) 1/2) to a quadrupolar
nucleusS (S > 1/2) has been carefully analyzed in the past
years, theoretically and experimentally.26-28 These spin pair
systems were especially studied under MAS conditions, leading
to “dipolar-coupled” spectra for theI spin. Moreover, it was
observed that this residual interaction cannot be completely
eliminated by rapid MAS (for the description of rapid MAS on
this particular interaction, see Section 4). Originally, asymmetric
doublets were observed in spectra related to13C-14N (S ) 1)
pairs.29 The13C resonance frequencies associated to the different
ms states of the14N nucleus were calculated,26 leading to the
following expressions ofωmS

static:

whereCQ ) (e2qZZQ)/h is the quadrupole coupling constant,D
) (µo/4π)(p/2π)(γCγN)/r3

CN is the dipolar coupling constant,

and ZN ) (γNBo)/2π is the Zeeman frequency of the14N.
Equations 3.1 correspond to a special case whereηQ ) 0 and
the dipolar and quadrupolar PAS are coincident (the internuclear
radiusrCN is collinear with theZ axis of the quadrupolar PAS).
General expressions are given in ref 26. Obviously, no second-
degree surface can give an accurate representation of the shifts
represented by eqs 3.1. Following the approach presented in
Section 2, we consider the set of general complementary fourth-
degree surfaces given in the unique PAS by

These surfaces are of revolution (withZ as the axis of
revolution), as only one Euler angle (âo) is involved in eq 3.1.
Moreover, we impose that ((r-4) ) ωmS

static for ms ) 0, +1, and
-1, respectively. Systems of linear equations (comparable to
eqs 2.24) are obtained in each case. The obtainedamS, bmS, cmS

values are given in Table 1. The corresponding surfaces are
presented in Figure 8. One notes that the equationCoZ2(X2 +
Y2) ) -1 corresponds to an imaginary surface. The surface
related toCoZ2(X2 + Y2) ) +1 exhibits two asymptotes at 0°
and 90°. The shape of this surface is comparable to the one

Figure 5. Pictorial representation of second-order interaction using
the set of complementary fourth-degree surfaces (eqs 2.19 and 2.21).
The signs+ and- are emphasized. For particular orientations ofBo

in the quadrupolar PAS (âo ) 0°, øo, Φo and 90°), the corresponding
resonance shifts are indicated on a typical second-order broadened line
shape (ηQ ) 0). The quadrupolar dimension is given inC-1/2,1/2 units
(see eq 2.15).

ω0
static) 9

2(2πDCQ

ZN
) cos2 âo(1 - cos2 âo) (3.1a)

ω+1
static) -ω0

static/2 + 2πD(3 cos2 âo - 1) (3.1b)

ω-1
static) -ω0

static/2 - 2πD(3 cos2 âo - 1) (3.1c)

Figure 6. Sections in theXZplane of the fourth-degree surfaces defined
by eq 2.23 for variableηQ. (XYZ) is the quadrupolar PAS. The
corresponding equation isaX4 + cZ4 + eX2Z2 ) +1 (see eqs 2.25). (a)
ηQ ) 0. Asymptotes are located (fromZ) at Φ ) 0° andΦ ) 70.53°
(cos2 Φ ) 1/9) (see also Figure 3b). (b)ηQ ) 0.5. Asymptotes are
located (fromZ) at Φ ) 8.69° (cos2 Φ ) (9 + 4x2)/15) andΦ )
61.83° (cos2 Φ ) (9 - 4x2)/15). (c) ηQ ) 1. The asymptote is
located (fromZ) at Φ ) 35.26° (cos2 Φ ) 2/3). *The curve associated
to aX4 + cZ4 + eX2Z2 ) +1 is imaginary (a ) -2/3; c ) -1/6; e )
2/3). aX4 + cZ4 + eX2Z2 ) -1 is represented.

ams
(X2 + Y2)2 + bms

Z4 + cms
Z2(X2 + Y2) ) (1 (3.2)
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related to the (-1/2,1/2) central transition broadened by second-
order effects (see Section 2 and Figure 3). Surfaces related to
ms ) ( 1 (parts b and c of Figure 8) include a “classical” dipolar
term, corresponding to the expression(2πD(3 cos2 âo - 1) in
eqs 3.1.

4. Rotation of Samples around One Single Axis: MAS
and VAS

Andrew and Lowe12,13 demonstrated first that rapid rotation
of samples around the “magic-angle” (θ ) úm) allows the total

suppression of first-order interactions.θ corresponds to the angle
between the rotor axis andBo. Whenθ * úm, the reorientation
technique is known as VAS. Application of MAS and VAS to
quadrupolar nuclei was mainly investigated in the early 1980s.30,31

It was soon demonstrated that MAS cannot completely eliminate
the second-order effects on the central transition. In fact, a
residual broadening of the line is observed for everyθ. We shall
now illustrate the effects of MAS and VAS by considering the
fourth-degree surfaces presented in Section 2 and simple
Cartesian transformations. Most of the results will be demon-
strated forηQ ) 0, using eqs 2.19 and 2.21. They can be
extended as well toηQ * 0 by using eqs 2.23 and 2.25. Finally,
it should be noted that this approach is strictly analogous to
that used for the direct representation of MAS effects on first-
order interactions.10 Let us consider the central transition of a
quadrupolar nucleus, broadened by second-order effects (ηQ )
0). In the PAS, the pertinent fourth-degree surfaces giving the
second-order quadrupolar shift (inC-1/2,1/2 units; see eq 2.15)
for every crystallite’s orientation are

We consider a rotor frame (XRYRZR), which is oriented by the
Euler angles (R, â, γ) from the PAS (Figure 9). Equations 4.1
can be written in (XRYRZR) by using the matrixP and the
expressions forX4, Y4, ... Y2Z2 in terms ofXR, YR, andZR (see
the Appendix). Spinning the sample implies thatγ becomes a
function ofωrot whereωrot ) 2πνrot corresponds to the pulsation
of the rotor. We suppose thatνrot ) ∞, that is,νrot is much
higher than the considered interactions in hertz. When the
expressions ofX4, Y4, ...Y2Z2 are expanded (see the Appendix),
trigonometric terms involvingγ are averaged by considering
the following integrals:

Figure 7. Sections in theYZplane of the fourth-degree surfaces defined
by eq 2.23 for variableηQ. (XYZ) is the quadrupolar PAS. The
corresponding equation isbY4 + cZ4 + fY2Z2 ) +1 (see eq 2.25). (a)
ηQ ) 0. The curve is similar to the one presented in Figure 6a. The
corresponding surface is of revolution. (b)ηQ ) 0.5. Asymptotes are
located (fromZ) at Φ ) 5.63° (cos2 Φ ) (11 + 4x6)/21) andΦ )
76.16° (cos2 Φ ) (11 - 4x6)/21)). (c)ηQ ) 1. The asymptotes are
located (from Z) atΦ ) 9.74° (cos2 Φ ) (3 + 2x2)/6) andΦ )
80.26° (cos2 Φ ) (3 - 2x2)/6).

TABLE 1: Values of the Coefficients amS, bmS, cmS Involved
in the Pictorial Representation of the Dipolar Coupling of a
I ) 1/2 Spin Coupled to a Quadrupolar S Spina

a b c

0 0 0 (9/2) (2πDCQ)/ZN

1 -2πD 4πD 2πD(1 - 9/4(CQ/ZN))
-1 +2πD -4πD -2πD(1 + 9/4(CQ/ZN))

a CQ corresponds to the quadrupole coupling constant.D is the dipolar
constant.ZN is the Zeeman frequency of the quadrupolar nucleus (see
Section 3).

Figure 8. Surfaces of revolution illustrating the dipolar coupling of a
I spin to aS> 1/2 spin (in the quadrupolar PAS). They correspond to
amS(X

2 + Y2)2 + bmSZ
4 + cmSZ

2 (X2 + Y2) ) +1 (see Table 1 and eq
3.2) (co ) 1 and 2πD ) 10, in arb. units): (a)ms ) 0; (b) ms ) +1;
(c) ms ) -1. *The surface corresponding toco Z2 (X2 + Y2) ) -1 is
imaginary (ao ) bo ) 0).

(3/8)(X2 + Y2)[8Z2 - (X2 + Y2)] ) (1 (4.1)
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for r ) 0-4 ands ) 0-4 with (r, s) * (0,0) andr + s e 4.
Useful values ofIr,s are given in Table 2. Under rapid rotation,
the averaged fourth-degree surfaces (Figure 9) are given in
(XRYRZR) by

with

The averaged surfaces are of revolution withZR as the axis of
revolution. All these surfaces are different as their equations
depend explicitly onâ. Moreover, depending on the sign of
A(â), B(â), andC(â) (eqs 4.4), variable curves related to eqs
4.3 are obtained. Several of them are presented in Figure 10. In
most cases, eqs 4.3 correspond to complementary surfaces.
When A(â), B(â), andC(â) are strictly positive, it is evident

that one of eqs 4.3 corresponds to an imaginary surface. It
follows that the+ surface is a closed one (see for instanceâ )
30° in Figure 10). Finally, it can be noted that the intersections
of the averaged surfaces in theZR direction are given by

(the intersections can be imaginary).
Using eq 4.1, the intersection of the static surfaces in theZR

direction corresponds to a radiusR given by

Equations 4.5 and 4.6b give a simple geometrical interpretation
of ZR; it corresponds simply to the intersection radius of the
static surfaces in the rotor axis direction. Physically, it implies
that no averaging occurs in theZR direction during rotation,
whereas averaging occurs perpendicularly to this axis. We
suppose now thatBo is oriented from the rapidly rotating rotor
by the angleθ (see Figure 9). Ifθ ) úm, this situation
corresponds to MAS. The intersection radiusrâ of the averaged
surfaces related to eqs 4.3 in theBo direction is then given (for
a fixed value ofθ) by

A(â), B(â), andC(â) are given in eqs 4.4. One can then derive
easily the second-order shift under rapid rotation atθ for each
crystallite’s orientation as

Figure 9. Pictorial representation of rapid rotation of the sample around
one axis (θ ) úm, MAS; θ * úm, VAS). In the static rotor (left side),
the crystallites are randomly oriented from (XRYRZR). The surface is
drawn in the PAS of each crystallite (characterized byZ, ηQ ) 0). In
the rapidly rotating rotor (right side), the corresponding averaged surface
is represented. It is of revolution and admitsZR as the unique axis of
revolution. Intersections with the horizontal axis andZR are given by
([A(â)]-1/4 and ([B(â)]-1/4 (see eqs 4.4), respectively (we suppose
here thatA(â) > 0 andB(â) > 0). The intersection of the averaged
surface in theBo direction gives râ.

Ir,s ) 1
2π ∫0

2π
(cosγ)r (sin γ)s dγ (4.2)

TABLE 2: Useful Values of the Integrals I r,s for ( r + s) e 4
and (r, s) * (0, 0) (see Section 4 and Eq 4.2)

s

r 0 1 2 3 4

0 0 1/2 0 3/8
1 0 0 0 0
2 1/2 0 1/8
3 0 0
4 3/8

A(â)(XR
2 + YR

2)2 + B(â)ZR
4 + C(â)ZR

2(XR
2 + YR

2) ) (1
(4.3)

A(â) ) (3/64)(-27 cos4 â + 14 cos2 â + 5)

B(â) ) (1/8)(-27 cos4 â + 30 cos2 â - 3)

C(â) ) (3/8)(27 cos4 â - 22 cos2 â + 3) (4.4)

Figure 10. Averaged surfaces of revolution under rapid rotation of
the sample.ZR corresponds to the axis of revolution.Bo is oriented
from ZR by θ. (a)â ) 0°. The curve is comparable to the one presented
in Figure 3b. Asymptotes are at 0° and 70.53° (from ZR). (b) â ) 30°.
Intersections with the axes are given by([A(30°)]-1/4 and([B(30°)]-1/4

(see eqs 4.4). (c)â ) 60°. Intersections with the axes are given by
([A(60°)]-1/4 and([B(60°)]-1/4 (see eqs 4.4). (d)â ) 90°. Intersection
with the horizontal axis is given by([A(90°)]-1/4 ) ((15/64)-1/4. The
asymptote is located fromZR at Φ ) 29.22° (cos2 Φ ) (7 + 2
x46)/27).

B(â)ZR
4 ) (1 (4.5)

(3/8) sin2 â(8 cos2 â - sin2 â)R4 ) (1 (4.6a)

B(â)R4 ) (1 (4.6b)

(râ
-4 ) A(â) sin4 θ + B(â) cos4 θ + C(â) sin2 θ cos2 θ

(4.7)
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C-1/2,1/2 is given by eq 2.15. Forθ ) úm, eq 4.8 becomes

Equations 4.8 and 4.9 are strictly analogous to equations
proposed in the literature.25,32 At this stage, it is interesting to
note that the quadrupolar shifts under VAS (eq 4.8) and MAS
(eq 4.9) were easily derived by using the surfaces presented in
Section 2. A clear pictorial representation is given. It is worth
noting that the only prerequisite is the knowledge of the energy
levels corrected by standard second-order perturbation theory
(see Section 2). Equations 4.7-4.9 allow us to visualize the
effects of VAS or MAS on the broadening of the central
transition.ω-1/2,1/2

(2),θ is plotted versusâ for various values ofθ
in Figure 11. The static second-order quadrupolar shift is also
plotted, using eqs 2.19 and 2.21 and ((r-4)static ) (3/8) sin2 âo

(8 cos2 âo - sin2 âo). For a fixed θ value, |(ω-1/2,1/2
(2),θ )max -

(ω-1/2,1/2
(2),θ )min| corresponds to the residual line width of the

central transition. Most results concerning the MAS-VAS
techniques are illustrated in Figure 11. (i) Reorientation atθ )
0° does not affect the static line width. In this case,â ) âo and
eq 4.8 becomes

(see also eq 2.14). (ii) It appears that [(ω-1/2,1/2
(2),θ )max -

(ω-1/2,1/2
(2),θ )min] is never zero. In the MAS case, eq 4.9 leads to

for âmax given by cos2 âmax ) 3/7 or âmax ) 49.11° and to

for âmin ) 0°. Equations 4.11a and 4.11b are in agreement with
results given in the literature. It is interesting to note that
ω-1/2,1/2

(2),úm < 0, asC-1/2,1/2 < 0 for everyâ. It follows that the
residual line is totally shifted apart from the true isotropic
chemical shift. This is a general and well-known result. It can
be understood geometrically by considering the Figure 10. The
intersection of each curve in theBo direction atθ ) úm from
ZR exists for everyâ. It implies that (+râ

-4) in eq 4.7 must be
considered. (iii) The minimum residual line width is obtained
for θ ≈ 70°. This result was also emphasized in the literature.33

The most important point concerning the MAS-VAS experi-
ment is that no single-axis reorientation can totally remove the
second-order broadening of the central transition. We shall
demonstrate this important result just by using eqs 4.4 and 4.7.
One can note that this approach will be used several times in
the following sections. If rapid rotation at a particular value of
θ allows the total suppression of the second-order broadening,
it follows (eq 4.7) that

C1 being a constantindependent ofâ. Equation 4.12 implies
that

for everyâ (θ is fixed). Using eqs 4.4 and 4.7, eq 4.13 becomes

with

If eq 4.14 is fulfilled for everyâ, then the following equations
must be fulfilled simultaneously:

S(θ) ) 0 implies cosθ ) (3 ( 2 x6/5)1/2/x7 or θ+ )
30.56° and θ- ) 70.12°. T(θ) ) 0 implies cosθ ) (17 ( 2
x46)1/2/(3x5) or θ+ ) 34.50° and θ- ) 73.96°. Obviously,
the system of eqs 4.16 has no solution. It follows that no rotation
at a given angleθ allows the total suppression of second-order
broadening. At this stage, it can be noted that no explicit
reference to the second- and fourth-order Legendre polynomials
P2(cos θ) and P4(cos θ) was made. Netherveless, it can be
realized that

with

Solving the system 4.16 is then equivalent to finding a common
root toP2(cosθ) andP4(cosθ). This is actually impossible and
this statement has been widely used in the literature for the

Figure 11. MAS-VAS experiment. Plot ofω-1/2,1/2
(2),θ versusâ (see eq

4.8). The vertical axis is given inC-1/2,1/2 units (eq 2.15). For a fixed
θ value,|(ω-1/2,1/2

(2),θ )max - (ω-1/2,1/2
(2),θ )min| corresponds to the residual line

width. The minimum residual line width∆1 is obtained forθ ≈ 70°.

∂

∂â
((râ

-4) ) 0 (4.13)

(27/16)S(θ) cos3 â - (3/16)T(θ) cosâ ) 0 (4.14)

S(θ) ) 35 cos4 θ - 30 cos2 θ + 3 (4.15a)

T(θ) ) 135 cos4 θ - 102 cos2 θ + 7 (4.15b)

S(θ) ) T(θ) ) 0; θ ∈ [0,90°] (4.16)

S(θ) ) 8P4(cosθ)

T(θ) ) (216/7)P4(cosθ) + (64/7)P2(cosθ) (4.17)

P2(cosθ) ) (1/2)(3 cos2 θ - 1) (4.18a)

P4(cosθ) ) (1/8)(35 cos4 θ - 30 cos2 θ + 3) (4.18b)

ω-1/2,1/2
(2),θ ) C-1/2,1/2((râ

-4)

) C-1/2,1/2(A(â) sin4 θ + B(â) cos4 θ + C(â) sin2 θ cos2 θ)
(4.8)

ω-1/2,1/2
(2),úm ) (1/16)C-1/2,1/2(21 cos4 â - 18 cos2 â + 5) (4.9)

ω-1/2,1/2
(2),0° ) C-1/2,1/2B(âo) ) ω-1/2,1/2

(2),static (4.10)

(ω-1/2,1/2
(2),úm )max ) (1/14)C-1/2,1/2 (4.11a)

(ω-1/2,1/2
(2),úm )min ) (1/2)C-1/2,1/2 (4.11b)

(râ
-4 ) C1 (4.12)
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interpretation of the MAS-VAS experiment dealing with qua-
drupolar nuclei.16,34,35However, it does not represent a key point
of our discussion (see above).

Finally, we give generalized formulas forηQ * 0. As stated
in Section 2, the complementary fourth-degree surfaces ac-
counting for the second-order broadening are given in the PAS
by

a-f are given in eqs 2.25 and are functions ofηQ. These surfaces
are not necessarily of revolution. Following the calculations for
ηQ ) 0 presented above, the averaged fourth-degree surfaces
are given in (XRYRZR) by

with

As stated above, the intersection radiusrR,â of the averaged
surfaces related to eq 4.20 in theBo direction is then given by

for a fixed θ value.
The second-order shift under rapid rotation atθ for each

crystallite’s orientation is then given by

C-1/2,1/2 is given in eq 2.15. Forθ ) úm, (that is, MAS), eq
4.23 becomes

Equations 4.23 and 4.24 are in agreement with those proposed
in the literature.25 Again, it should be noted that they are derived

easily and connected directly to the averaged fourth-degree
surfaces related to eq 4.20.

The effect of the MAS-VAS experiment on dipolar coupled
I-S systems (S > 1/2) (see Section 3) will now be presented.
Representative surfaces of this particular interaction are given
by eqs 3.2. As presented above and using the integralsIr,s (see
eq 4.2 and Table 2), averaged surfaces can be defined under
rapid rotation for everyms value. These averaged surfaces for
ms ) 0, +1, -1 are given in (XRYRZR) by

with

The amS, bmS, andcmS coefficients are given in Table 1. We
suppose thatBo is oriented from the rapidly rotating rotor by
the angleθ. The intersection radiusrâ of the averaged surfaces
(eqs 4.25) in theBo direction is given by

For θ ) úm (that is, MAS), one obtains under rapid rotation

It is obvious that rapid MAS cannot suppress completely the
involved interaction and that a residual line width will be
observed. Again, if rapid rotation at a particular value ofθ
allows the total suppression of the broadening, it follows (using
eq 4.27) that

with C2 being a constant independent ofâ. Using eq 4.13, one
obtains the following equation:

with

S(θ) andT(θ) are given by eqs 4.15. As eq 4.30 must be valid
for everyâ, θ must fulfill U(θ) ) V(θ) ) 0 andθ ∈ [0,90°].
U(θ) ) 0 implies θ+ ) 30.56° and θ- ) 70.12°. V(θ) ) 0

aX4 + bY4 + cZ4 + dX2Y2 + eX2Z2 + fY2Z2 ) (1 (4.19)

D(r,â) (XR
2 + YR

2)2 + E(r,â)ZR
4 +

F(r,â)ZR
2 (XR

2 + YR
2) ) (1 (4.20)

D(r,â) ) -(9/64)[9-6 ηQ(cos 2R) +

ηQ
2(cos 2R)2]cos4 â + (1/32){21-40ηQ(cos 2R) +

ηQ
2[2 + 9 (cos 2R)2]} cos2 â + (1/192){45 +

78ηQ(cos 2R) - ηQ
2[27(cos 2R)2 - 16]}

E(r,â) ) -(3/8)[9 - 6ηQ(cos 2R) + ηQ
2(cos 2R)2]cos4 â +

(1/4){15 - 8ηQ(cos 2R) - ηQ
2[2 - 3(cos 2R)2]} cos2 â -

(1/24){9 + 6ηQ(cos 2R) + ηQ
2[9(cos 2R)2 - 8]}

F(r,â) ) -(9/8)[-9 + 6ηQ(cos 2R) -

ηQ
2(cos 2R)2] cos4 â + (1/4){-33 + 32ηQ(cos 2R) +

ηQ
2[2-9(cos 2R)2]} cos2 â + (1/24){27 - 30ηQ(cos 2R) -

ηQ
2[8 - 27(cos 2R)2]} (4.21)

(rR,â
-4 ) D(r,â) sin4 θ + E(r,â) cos4 θ +

F(r,â) sin2 θ cos2 θ (4.22)

ω-1/2,1/2
(2),θ ) C-1/2,1/2((rR,â

-4)

) C-1/2,1/2(D(r,â) sin4 θ + E(r,â) cos4 θ +

F(r,â) sin2 θ cos2 θ) (4.23)

ω-1/2,1/2
(2),úm ) C-1/2,1/2{[21/16-(7/8)ηQ(cos 2R) +

(7/48)ηQ
2(cos 2R)2] cos4 â + [-9/8 + (1/12)ηQ

2 +

ηQ(cos 2R) - (7/24)ηQ
2(cos 2R)2] cos2 â + [5/16 -

(1/8)ηQ(cos 2R) + (7/48)ηQ
2(cos 2R)2]} (4.24)

GmS
(â)(XR

2 + YR
2)2 + HmS

(â)ZR
4 +

ImS
(â)ZR

2(XR
2 + YR

2) (1 (4.25)

GmS
(â) ) (3/8)(amS

+ bmS
- cmS

) cos4 â +

(1/4)(amS
- 3bmS

+ cmS
) cos2 â + (1/8)(3amS

+ 3bmS
+ cmS

)

HmS
(â) ) (amS

+ bmS
- cmS

) cos4 â +

(-2amS
+ cmS

) cos2 â + amS

ImS
(â) ) -3(amS

+ bmS
- cmS

) cos4 â + (2amS
+ 3bmS

-

(5/2)cmS
) cos2 â + (amS

+ (1/2)cmS
) (4.26)

(râ
-4 ) GmS

(â) sin4 θ + HmS
(â) cos4 θ +

ImS
(â) cos2 θ sin2 θ (4.27)

ω0
úm ) co/18 (7 cos4 â - 6 cos2 â + 3) (4.28a)

ω+1
úm ) ω-1

úm ) -(ω0
úm)/2 (4.28b)

(râ
-4 ) C2 (4.29)

U(θ) cos3 â - (1/2)V(θ) cosâ ) 0 (4.30)

U(θ) ) (1/2)S(θ)

V(θ) ) 15 cos4 θ - 12 cos2 θ + 1 ) (3/16)S(θ) +
(1/16)T(θ) (4.31)
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implies cosθ ) (6 ( x21)1/2/x15 or θ+ ) 32.87° andθ- )
72.09°. It follows that no rotation at a givenθ allows the total
suppression of the dipolar interaction. It can further be noted
that

P2(cosθ) andP4(cosθ) are defined by eqs 4.18. The situation
presented here is therefore strictly analogous to that presented
above and related to the (-1/2,1/2) central transition of
quadrupolar nuclei.

5. Dynamic-Angle Spinning, Dynamic-Angle Hopping and
Double Rotation

It has been demonstrated theoretically and experimentally,
in the late 1980s,17-19 that the total suppression of second-order
broadening was actually possible. Rapid rotation around two
axes at particular anglesθ1 andθ2 (that is DAS) yields a 2D
correlation. One dimension is related to the “isotropic” dimen-
sion and in this sense, high resolution for quadrupolar nuclei is
attained. Each DAS angles pair is connected to a factork, which
connects the time atθ1 and the time atθ2. In connection with
the DAS experiment, another experimental scheme was pro-
posed for the total suppression of second-order broadening
effects,20,21 the double-rotation of samples. A small inner rotor
(rotor 1) is rotating in a rotating outer rotor (rotor 2). For
particular values ofθi (the angle between the inner and the outer
rotor) andθe (the angle between the outer rotor andBo), isotropic
lines are obtained for each distinct crystallographic site.

We give now a pictorial representation of the DAS experi-
ment. We consider the averaged surfaces presented in Figure
10 and described by eqs 4.3 and 4.4. The intersections of these
surfaces in the Bo direction atθ1 and θ2 are given by eq 4.7
and lead to twoω-1/2,1/2

(2),θ1 andω-1/2,1/2
(2),θ2 values. For a given (θ1,

θ2, k) set, and if high resolution is attained, the following
equation must be fulfilled:

C3 being a constant independent ofâ. Using eqs 4.13-4.15, it
follows that

S(θ) andT(θ) are given by eqs 4.15. It follows that

This system can be analytically resolved, leading to

These analytical solutions are in agreement with those
proposed in the literature.36 Using eqs 4.4, 4.8, and 5.4 andâ

) 90° (as the following quantity is now independent ofâ), one
obtains immediatly

High resolution is attained and the isotropic shift is given by
(ηQ ) 0)

It was first demonstrated by Gann and co-workers37 that
continuous rotation of samples around the (θ1, θ2) DAS angles
is not necessary. Regular “hops” atθ1 and θ2 are indeed
sufficient. We follow our approach of surfaces averaging (see
Section 4). Rapid rotation implies averaging of trigonometric
terms, leading to the integralsIr,s (see eq 4.2) with (r + s) e 4.
If averaging is possible by discrete regularp “hops” of the rotor
at a given angle, then one must fulfill the following equations:

for every (r, s) and everyγ. Simple trigonometric calculations
show that p ) 5 corresponds to the minimal value. The
successive “hops” of the rotor describe a regular pentagon.
Generally, 10 orientations of the rotor are thus necessary for a
given (θ1, θ2) DAS angles pair (five positions atθ1 with 72°
increments and five positions atθ2 with the same increments).
However, the minimum number is six. Indeed, forθ1 ) 0°, the
shift under rapid rotation corresponds to the intersection of the
static fourth-degree surface (as forθ1 ) 0°, the rotor axis and
Bo are collinear). It follows that one position atθ1 ) 0° and
five positions atθ2 ) 63.43° are sufficient to fulfill the criteria
of a DAH experiment. In their original work, Gann and co-
workers used the (0°, 63.43°) pair for sensitivity consider-
ations.37 It is interesting to note that this hopping averaging
procedure is an extension of MAH, devoted to first-order
interactions.38 In this particular case, (r + s) e 2 (see ref 10
for a pictorial representation of MAH).

Finally, averaged surfaces related to a DOR experiment can
be obtained. As stated above, the criteria for high resolution
lead to a system of equations involvingθi andθe. This system
can be analytically solved, leading to the various (θi, θe) angles
pairs. They correspond to roots ofP2(cosθ) andP4(cosθ).35,39

6. Multiple-Quantum Magic-Angle Spinning and
Multiple-Quantum Variable-Angle Spinning

In Section 5, we have presented a pictorial approach of DAS,
DAH, and DOR experiments. In particular, we have shown that
the exact calculation of the second-order isotropic shift could
be easily derived, by using averaged fourth-degree surfaces.
However, DAS and DOR remain demanding experiments, as
special probes (including for instance rapid rotation axis flipping
in DAS or mutual rotation of two rotors in DOR) are required.
Moreover, spin dynamics considerations or appearance of
numerous spinning sidebands have limited so far a “routine”
use of these experiments. However, the concept of DAS and
DOR was very fruitful. Indeed, it was demonstrated that for
the total suppression of second-order broadening, a second
degree of freedom is needed (in contrast with MAS, which
involves rotation around a single axis). Recently, Frydman and

U(θ) ) 4P4(cosθ)

V(θ) ) (24/7)P4(cosθ) + (4/7)P2(cosθ) (4.32)

((râ
-4)θ1

°
+ k((râ

-4)θ2
°

) C3 (5.1)

(27/16)[S(θ1) + kS(θ2)] cos3 â - (3/16)[T(θ1) +
kT(θ2)] cosâ ) 0 (5.2)

S(θ1) + kS(θ2) ) 0 (5.3a)

T(θ1) + kT(θ2) ) 0 (5.3b)

θ1 ) arccos[13(1 + 2xk

x5 )]1/2

θ2 ) arccos[-2x5 + 5xk

15xk ]1/2

4/5 e k e 5 (5.4)

(ω-1/2,1/2
(2),θ1

°
+ kω-1/2,1/2

(2),θ2
°

)/(1 + k) ) (1/5)C-1/2,1/2 (5.5)

ω-1/2,1/2
(2),iso ) (1/5)C-1/2,1/2)

- 4π2

30ω0
[ 3CQ

2I(2I - 1)]2

[I(I + 1) - 3/4] (5.6)

Ir,s ) 1/p∑
q)0

p-1[cos(γ + q
360

p )]r[sin(γ + q
360

p )]s

(5.7)
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co-workers have demonstrated theoretically and experimentally
that the total suppression of second-order broadening was
possible by using a standard MAS probe.22,23The second degree
of freedom is chosen in the multiple-quantum coherences of
the quadrupolar energy levels system. The MQ-MAS experiment
had a great impact in the field of quadrupolar nuclei. To our
knowledge, more articles involving the MQ-MAS experi-
ment22,23,40 were published during the last three years than
articles dealing with DAS or DOR (over a decade period). We
propose now a pictorial representation of multiple-quantum
(MQ) transitions and MQ-MAS experiment. At first insight, it
seems rather difficult to illustrate the MQ coherences. If these
illustrations are found, the MQ-MAS experiment will then be
interpreted in terms of correlation between the MQ transitions
and the (-1/2,1/2) transition. In the following, theI ) 3/2 and
I ) 5/2 cases will be treated in detail. Let us suppose firstI )
3/2 andηQ ) 0. The expression of the central transition shift
involving second-order effects is given by eq 2.14

C-1/2,1/2 is given by eq 2.15. In eq 6.1, we introduce explicitly
ωcs, which includes the “true” chemical shift of the considered
nucleus. ConsideringI ) 3/2, eq 6.1 can be rewritten as

We now decide to describe the triple-quantum coherence by
the following equation (using eqs 2.5):

Inserting the constantC3/2, one obtains

We focus first on the geometrical terms involvingâo in eqs
6.2 and 6.5. A representation ofω-1/2,1/2

(2),static is given by eqs 2.19,
2.21 and Figures 3-4. A direct representation ofω-3/2,3/2

(2),static,3/2is
then given by the fourth-degree surfaces

Obviously, one of these surfaces is imaginary. These equations
are of revolution with theZ axis as the axis of revolution. The
surface corresponding to-(3/8)(X2 + Y2)[8Z2 + (X2 + Y2)] )
-1 is presented in Figure 12, as well as the intersection of the
surface by any plane containing theZ axis. The sign- is
emphasized. The second step in the description of the MQ-MAS
experiment is the transformation of the surfaces described above
under rapid rotation. For the central transition, averaged surfaces
are given by eqs 4.3-4.4. Following the procedure described
in Section 4, the averaged surfaces corresponding to the triple-
quantum coherence are then given by

with

â corresponds to the angle between theZ axis of the quadrupolar
PAS and theZR axis of the rotor. Under rapid MAS (θ ) úm),
the corresponding shifts are derived and correspond to the
intersections of the surfaces described above in theBo direction.

A(â), B(â), and C(â) are given in eqs 4.4. The MQ-MAS
experiment can be interpreted as an evolution underω-3/2,3/2

(2),úm

followed by an evolution duringte under ω-1/2,1/2
(2),úm . If high

resolution is attained, the following equation must be fulfilled:

with C4 being a constant independent ofâ. It follows that
∂/∂â[( ( râ

-4)-3/2,3/2
3/2 + te((râ

-4)-1/2,1/2] ) 0 or

Equation 6.11 is fulfilled for everyâ if te ) 7/9. In other words,
an echo coded by an isotropic shift is obtained forte ) 7/9.
This is a direct representation of the MQ-MAS experiment. It
is crucial to note that we have illustrated in this case the so-

Figure 12. (a) Pictorial representation of the triple-quantum coherence
(I ) 3/2) corresponding to the equation-(3/8)(X2 + Y2)[8Z2 + (X2 +
Y2)] ) -1 (eq 6.6,ηQ ) 0). TheZ axis of the PAS corresponds to the
axis of revolution and to an asymptote. (b) Section of the surface by
any plane containing theZ axis. The sign- is emphasized.

ω-1/2,1/2
(2),static) C-1/2,1/2[(3/8) sin2 âo (9 cos2 âo - 1)] + ωcs

(6.1)

ω-1/2,1/2
(2),static) C3/2[(3/8) sin2 âo(9 cos2 âo - 1)] + ωcs (6.2)

C3/2 ) - 2π2

ωo
[ 3CQ

2I(2I - 1)]2

(6.3)

ω-3/2,3/2
(2),static,3/2) p-1(E-3/2

(2) - E3/2
(2)) + 3ωcs (6.4)

ω-3/2,3/2
(2),static,3/2) C3/2[-(3/8) sin2 âo(7 cos2 âo + 1)] + 3ωcs

(6.5)

-(3/8)(X2 + Y2)[8Z2 + (X2 + Y2)] ) (1 (6.6)

A-3/2,3/2
3/2 (XR

2 + YR
2)2 + B-3/2,3/2

3/2 ZR
4 +

C-3/2,3/2
3/2 ZR

2(XR
2 + YR

2) ) (1 (6.7)

A-3/2,3/2
3/2 ) (3/64)(21 cos4 â - 18 cos2 â - 11)

B-3/2,3/2
3/2 ) (3/8)(7 cos4 â - 6 cos2 â - 1)

C-3/2,3/2
3/2 ) (3/8)(-21 cos4 â + 18 cos2 â - 5) (6.8)

((râ
-4)-1/2,1/2) A(â) sin4 úm + B(â) cos4 úm +

C(â) sin2 úm cos2 úm ) (4/9)A(â) + (1/9)B(â) +
(2/9)C(â) (6.9a)

((râ
-4)-3/2,3/2

3/2 ) A-3/2,3/2
3/2 sin4 úm + B-3/2,3/2

3/2 cos4 úm +

C-3/2,3/2
3/2 sin2 úm cos2 úm ) (4/9)A-3/2,3/2

3/2 + (1/9)B-3/2,3/2
3/2 +

(2/9)C-3/2,3/2
3/2 (6.9b)

((râ
-4)-3/2,3/2

3/2 + te((râ
-4)-1/2,1/2) C4 (6.10)

(7/24)(9te - 7) cos3 â + (1/8)(7- 9te) cosâ ) 0 (6.11)
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called (-3Q) echo (this notation is now usual in the literature41).
Indeed, it corresponds to the difference (E-3/2

(2) - E3/2
(2)) (see eq

6.4) andnot to the opposite. If (E3/2
(2) - E-3/2

(2) ) is used, eq 6.11
is slightly modified and becomes

Equation 6.12 is fulfilled for everyâ if te ) -7/9 (i.e., in the
“negative” time domain). The constantC4 can be readily
calculated for a particular value ofâ (that is,â ) 90°) by using
eq 6.10 andte ) 7/9. One obtains

(ω-1/2,1/2
(2),iso is given by eq 5.6). It is important to note that eqs 6.2

and 6.4 contain some terms involving the true chemical shift
ωcs. This contribution can be easily described by the following
surfaces:

as (r-4) ) ωcs and (r-4) ) 3ωcs, respectively. The eqs 6.14a
and 6.14b correspond to surfaces having the shape of spheres
of radius (ωcs)-1/4 and (3ωcs)-1/4 (we supposeωcs > 0). They
are invariant under rapid rotation and the evolution under the
three-quantum coherence followed by the single-quantum coher-
ence is thus given by

assuming thatte ) 7/9 (see above). It follows that the attained
isotropic shift (when performing a MQ-MAS experiment)
contains two terms:

This formula is in agreement with that proposed in the
literature.41 Other equivalent formulas can be found in the
literature.23 It has thus been demonstrated that simple fourth-
degree surfaces are able to illustrate the main results of the MQ-
MAS experiment. At this stage, several comments can be made.
The MQ-MAS experiment is comparable to the DAS experi-
ment. However, in DAS, the second-order isotropic shift (
ω-1/2,1/2

(2),iso ) is analytically obtained afterweightingof the shifts at
θ1 andθ2 ((θ1, θ2) corresponding to a DAS angles pair) (see eq
5.5). On the contrary, the derivation of the second-order shift
in MQ-MAS (ω-3/2,3/2

(2),iso,3/2) does not involve any weighting (see
eq 6.10). This proves that DAS and MQ-MAS are not strictly
analogous. Anyway, both methodologies lead to a 2D experi-
ment involving an isotropic and an anisotropic dimension and
are comparable in this sense. Second, eq 6.11 shows that the
only echo containing an isotropic information is obtained forte
) 7/9. The location of other echoes is predicted,41 but they
cannot contain any isotropic information as shown by eq 6.11.
Finally, it is rather surprising to note that the triple-quantum
coherence can be illustrated by the simple difference of the
corresponding energy levels (see eq 6.4). In particular, the
quantity (3ωcs) is involved. It is crucial to note that this term
does not correspond to an irradiation at (3ωo) but irradiation at
ωo. Nethertheless, (3ωcs) andωcs allow us to derive the shift of
the true chemical shift (see eqs 6.15 and 6.16). We now turn to

the caseI ) 5/2. Again, the central transition is characterized
by

Using eq 2.5, the triple-quantum coherence (corresponding to
(+3Q)) is then given by

We note that this equation corresponds to the opposite of eq
6.4. Indeed, the (+3Q) coherence is involved here. Inserting
the constantC5/2, one obtains

A representation of the geometrical part ofω3/2,-3/2
(2),static,5/2is then

given by

Under rapid rotation, these equations become

with

Whenθ ) úm, the shifts are given by

(see eqs 4.4 and 6.9). The condition for high resolution is given
by ((râ

-4)+3/2,-3/2
5/2 + te((râ

-4)-1/2,1/2 ) C5, with C5 being a
constant. It leads to the following equation:

An echo occurs atte ) 19/12. The constantC5 is then calculated
for â ) 90°. One obtains

As stated above (eq 6.15),

assumingte ) 19/12. The attained isotropic shift is therefore

(49/3+ 21te) cos3 â + (1/8)(7+ 9te) cos â ) 0 (6.12)

C3/2C4 ) (4/9)
2π2

ωo
[ 3CQ

2I(2I - 1)]2

) -(20/9)ω-1/2,1/2
(2),iso (6.13)

ωcs(X
2 + Y2 + Z2)2 ) 1 (6.14a)

3ωcs (X2 + Y2 + Z2)2 ) 1 (6.14b)

3ωcs + teωcs ) (34/9)ωcs (6.15)

ω-3/2,3/2
(2),iso,3/2) -(20/9)ω-1/2,1/2

(2),iso + (34/9)ωcs (6.16)

ω-1/2,1/2
(2),static) C5/2 [(3/8) sin2 âo(9 cos2 âo - 1)] + ωcs (6.17)

C5/2 ) -16
3

π2

ωo
[ 3CQ

2I(2I - 1)]2

(6.18)

ω3/2,-3/2
(2),static,5/2) p-1(E3/2

(2) - E-3/2
(2) ) - 3ωcs (6.19)

ω3/2,-3/2
(2),static,5/2) C5/2 [(27/32) sin2 âo(sin2 âo -

(16/3) cos2 âo)] - 3ωcs (6.20)

(27/32)(X2 + Y2)[-(16/3)Z2 + (X2 + Y2)] ) (1 (6.21)

A+3/2,-3/2
5/2 (X2 + Y2)2 + B+3/2,-3/2

5/2 Z4 +

C+3/2,-3/2
5/2 Z2(X2 + Y2) ) (1 (6.22)

A+3/2,-3/2
5/2 ) (3/256)(171 cos4 â - 78 cos2 â - 21)

B+3/2,-3/2
5/2 ) (3/32)(57 cos4 â - 66 cos2 â + 9)

C+3/2,-3/2
5/2 ) (3/32)(-171 cos4 â + 138 cos2 â - 15) (6.23)

((râ
-4)-1/2,1/2) (4/9)A(â) + (1/9)B(â) + (2/9)C(â)

(6.24a)

((râ
-4)+3/2,-3/2

5/2 ) (4/9)A+3/2,-3/2
5/2 + (1/9)B+3/2,-3/2

5/2 +

(2/9)C+3/2,-3/2
5/2 (6.24b)

2(-133/64+ (21/16)te) cos3 â +
(57/32- (9/8)te) cosâ ) 0 (6.25)

C5/2 C5 ) -(8/9)
π2

ωo
[ 3CQ

2I(2I - 1)]2

) (5/6)ω-1/2,1/2
(2),iso (6.26)

-3ωcs + teωcs ) -(17/12)ωcs (6.27)
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given by

As I ) 5/2, a five-quantum experiment can be performed and
has been indeed demonstrated experimentally.42 Following the
procedure cited above, the five-quantum coherence (correspond-
ing to (-5Q)) is given by

Inserting the constantC5/2 (eq 6.18), one obtains

A geometrical representation is given by

One of these surfaces is imaginary. Under rapid rotation, these
equations become

TABLE 3: Principal Features for the Representation of Multiple-Quantum Transitions and the MQ-MAS Experiment a

a For clarity: ε ) [3CQ/2I(2I - 1)]2, related to the constantCI)n/2; ω(m
st ≡ (ω(m/2,-m/2

(2),static,I)n/2)/CI)n/2, related to the “static” fourth-degree surfaces;A(m

≡ A(m/2,-m/2
I)n/2 (as well as forB(m and C(m), related to the averaged fourth-degree surfaces under rapid rotation;ω(m

iso ≡ ω(m/2,-m/2
(2),iso,I)n/2, related to the

quadrupolar isotropic shift;ωiso ≡ ω-1/2,1/2
(2)iso , related to the quadrupolar isotropic shift of the central transition;ωcs corresponds to the true isotropic

chemical shift. * indicates that one of the considered surfaces is imaginary.

ω+3/2,-3/2
(2),iso,5/2 ) (5/6)ω-1/2,1/2

(2),iso - (17/12)ωcs (6.28)

ω-5/2,5/2
(2),static,5/2) p-1(E-5/2

(2) - E5/2
(2)) + 5ωcs (6.29)

ω-5/2,5/2
(2),static,5/2)

C5/2[-15/32 sin2 âo(sin2 âo + 16 cos2 âo)] + 5ωcs (6.30)

-(15/32)(X2 + Y2)[16Z2 + (X2 + Y2)] ) (1 (6.31)

A-5/2,+5/2
5/2 (X2 + Y2)2 + B-5/2,+5/2

5/2 Z4 +

C-5/2,+5/2
5/2 Z2(X2 + Y2) ) (1 (6.32)
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with

Transposing eqs 6.24, the condition for high resolution is
obtained for

The echo occurs atte ) 25/12. One obtains consequently

with ((râ
-4)-5/2,+5/2

5/2 + te((râ
-4)-1/2,1/2) C6 (C6 is a constant).

The attained isotropic shift is then given by

Our pictorial approach of the MQ-MAS experiment can be
extended to everyI ) n/2 (n ) 3, 5, 7, 9) spin and to every
order of coherence. All needed parameters are presented in Table
3, including (i) the constantCI)n/2, (ii) the expression of
ω(m/2,-m/2

(2),static,I)n/2 for m ∈ [3,n], (iii) the equations of the surfaces
connected toω(m/2,-m/2

(2),static,I)n/2, (iv) the coefficients A(m/2,-m/2
I)n/2 ,

B(m/2,-m/2
I)n/2 , C(m/2,-m/2

I)n/2 related to the averaged surfaces under
rapid rotation, (v) the derived time for echote, and (vi) the
attained isotropic shiftω(m/2,-m/2

(2),iso,I)n/2. The involved surfaces are
presented in Figure 13. One particular feature is related to the
(+7Q) transition forI ) 9/2. Indeed, the equations of the static
fourth-degree surfaces are given by

One of these surfaces is imaginary. The other one has the shape
of a cylinder of revolution (with theZ axis of the PAS as the
axis of revolution) but corresponds actually to a fourth-degree
surface.

As a conclusion, we have shown that the abstract notion of
multiple-quantum coherence as well as the MQ-MAS experi-
ment can be safely illustrated by fourth-degree surfaces. In
particular, the isotropic shifts on the F1 dimension (F2 corre-
sponds to the anisotropic dimension) were derived easily. It is
interesting to note that the “static” energy levels (eqs 2.25) are
just needed for our pictorial approach. Moreover, the representa-
tion can be extended to the MQ-VAS experiment,43 which
involvesθ * úm (θ corresponds to the angle between the rotor
axis andBo). Such a representation uses mostly the coefficients
A(m/2,-m/2

I)n/2 , B(m/2,-m/2
I)n/2 , C(m/2,-m/2

I)n/2 given in Table 3. The casesI
) 5/2 and I) 3/2 ((+3Q) and (-3Q) coherences, respectively)
are treated as examples. Forθ * úm andI ) 5/2, eqs 6.9 give:

If high resolution is attained in one dimension, the following
equation must be fulfilled:

(C7 being a constant). By using the derivation of eq 6.39, one
obtains

Figure 13. Representation in the PAS of the multiple-quantum coherences for everyI ) n/2 value (n ) 3, 5, 7, 9). When possible, the+ equation
is used. *One of the corresponding surfaces is imaginary.

((râ
-4)-1/2,1/2

θ ) A(â) sin4 θ + B(â) cos4 θ +

C(â) sin2 θ cos2 θ (6.38a)

((râ
-4)+3/2,-3/2

5/2,θ ) A+3/2,-3/2
5/2 sin4 θ + B+3/2,-3/2

5/2 cos4 θ +

C+3/2,-3/2
5/2 sin2 θ cos2 θ (6.38b)

((râ
-4)+3/2,-3/2

5/2,θ + te((râ
-4)-1/2,1/2

θ ) C7 (6.39)

(-420 cos4 θ + 360 cos2 θ - 36)te )

-665 cos4 θ + 570 cos2 θ -57 (6.40a)

(540 cos4 θ - 408 cos2 θ + 28)te )

855 cos4 θ - 630 cos2 θ + 39 (6.40b)

A-5/2,+5/2
5/2 ) (3/256)(225 cos4 â - 170 cos2 â - 95)

B-5/2,+5/2
5/2 ) (3/32)(75 cos4 â - 70 cos2 â - 5)

C-5/2,+5/2
5/2 ) (3/32)(-225 cos4 â + 190 cos2 â - 45) (6.33)

2(-175/64+ (21/16)te) cos3 â +
(75/32- (9/8)te) cosâ ) 0 (6.34)

C5/2 C6 ) (40/9)
π2

ωo
[ 3CQ

2I(2I - 1)]2

) -(25/6)ω-1/2,1/2
(2),iso (6.35)

ω-5/2,5/2
(2),iso,5/2) -(25/6)ω-1/2,1/2

(2),iso + (85/12)ωcs (6.36)

(21/16)(X2 + Y2)2 ) (1 (6.37)
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This system can be solved in terms of (te, θ) and one obtains (
te
úm ) 19/12, úm) corresponding to the MQ-MAS experiment

and (te
θ1)70.12° ) 15/8, θ1 ) 70.12°), (te

θ2)30.56° ) 15/8, θ2 )
30.56°). One can note thatθ1 andθ2 are roots ofP4(cosθ).

The caseI ) 3/2 can be treated following the same procedure.
The obtained system of equations is then

The solutions of eqs 6.41 are (te
úm ) 7/9, úm) corresponding to

the MQ-MAS experiment and (te
θ1)70.12° ) 0, θ1 ) 70.12°), (

te
θ2)30.56° ) 0, θ2 ) 30.56°). For rapid rotation of samples at

θ1,2, the echo occurs “immediatly” aste
θ1,2 ) 0. This character-

istic feature was first noted by Amoureux44 in the frame of the
variable-angle spinning for three-half spins (VAST) methodol-
ogy. However, overtone spectroscopy was involved in this
particular case.

The VAST experiment can be illustrated in a different way.
Indeed, forθ1 ) 70.12° or θ2 ) 30.56°, the quantity

is independent ofâ (this is shown by using eqs 4.18b and 6.8).
In other words, high resolution is obtained for this transition
under rapid rotation atθ1 or θ2.

Moreover, it can be noted that an MQ experiment involving
θ1 or θ2 implies the total suppression of second-order broadening
but allows the reintroduction of CSA and/or dipolar effects (as
θ1,2 * úm). Such experiments are interesting for the precise
determination of coupled interactions and were recently imple-
mented successfully.43

Let us consider anI ) 3/2 nucleus, whose CSA parameters
areω11, ω22, andω33 (principal components in angular velocity
units). Moreover, we suppose that the CSA and quadrupolar
PASs are coincident andωii > 0 (i ) 1, 2, 3). Following the
derivation of eqs 2.23 and 2.25, surfaces accounting for the
second-order quadrupolar broadening and CSA under static
conditions are obtained. For the (-1/2,1/2) central transition

corresponds to the second-order quadrupolar broadening (see
eq 2.19).

corresponds to CSA. For the triple-quantum coherence,

corresponds to the second-order quadrupolar broadening (see
eqs 6.5-6.6).

corresponds to CSA. Under rapid rotation and using eqs 4.3-

4.4 and 6.7-6.8, the corresponding averaged surfaces are
derived. For the central transition,

with

For the triple-quantum coherence,

The MQ-VAS experiment can be understood as a 2D correlation
between the central transition and the triple quantum coherence.
Using eqs 6.45-6.46, {((rR,â

-4)-3/2,3/2
3/2,θ1,2 , ((rR,â

-4)-1/2,1/2
θ1,2 } cor-

responds to a point in a 2D map (θ1 ) 70.12°, θ2 ) 30.56°).
Such a correlation map forθ1 ) 70.12° (in arbitrary units) is
presented in Figure 14a and is analogous to those presented by
Wang and co-workers.43

When θ ) úm (Figure 14b), the map is particularly simple
and corresponds to a straight line. In this case, the correlation

(-315 cos4 θ + 270 cos2 θ - 27)te )

-245 cos4 θ + 210 cos2 θ - 21 (6.41a)

(135 cos4 θ - 102 cos2 θ + 7)te )

105 cos4 θ - 90 cos2 θ + 9 (6.41b)

((râ
-4)-3/2,3/2

3/2,θ1,2 ) A-3/2,3/2
3/2 sin4 θ1,2 + B-3/2,3/2

3/2 cos4 θ1,2 +

C-3/2,3/2
3/2 sin2 θ1,2 cos2 θ1,2

(3/8)(X2 + Y2)[8Z2 - (X2 + Y2)] ) (1 (6.42a)

ω11X
4 + ω22Y

4 + ω33Z
4 + (ω11 + ω22) X2Y2+

(ω11 + ω33)X
2Z2 + (ω22 + ω33)Y

2Z2 ) ( 1 (6.42b)

-(3/8)(X2 + Y2)[8Z2 + (X2 + Y2)] ) (1 (6.43a)

3{ω11X
4 + ω22Y

4 + ω33Z
4 + (ω11 + ω22)X

2Y2+

(ω11 + ω33)X
2Z2 + (ω22 + ω33)Y
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Figure 14. (a) Pictorial representation of the MQ-VAS experiment (I
) 3/2,θ ) 70.12°). The obtained 2D maps correspond to a correlation
between a 1Q and a 3Q dimensions. (b) Whenθ ) 54.74°, a straight
line is obtained and corresponds to the MQ-MAS experiment (ref 43).
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experiment corresponds then to MQ-MAS: high resolution is
attained in one dimension.

It can be further noted that CSA is represented by a fourth-
degree expression (see eq 6.42b). Such an expression is used
for the homogeneity with the second-order quadrupolar terms
in the equations. Quadrics (second-degree surfaces) may be also
used.10

As a conclusion, several MQ experiments at different
macroscopic angles have been illustrated by fourth-order
surfaces and their averaged surfaces. Again, it can be noted that
the only prerequisite is the knowledge of eqs 2.5.

7. Conclusion

In this article, we have shown that fourth-degree surfaces are
able to represent second-order broadening effects on lines in
solid-state NMR. More generally, the shifts involving fourth-
degree polynomials of the basic trigonometric functions can be
interpreted in terms of fourth-degree surfaces. In that sense, this
approach is an extension of the representation of first-order
effects by quadrics (that is, second-degree surfaces). Special
attention was paid to the description of static quadrupolar and
“dipolar-quadrupolar” effects. Moreover, it has been shown
that the reorientation of samples could be taken into account
by using derived averaged fourth-degree surfaces. Most results
concerning MAS, VAS, DAS, DAH, DOR, and MQ-MAS
(VAS) were analytically derived, avoiding the use ofP2(cosθ)
and P4(cos θ) Legendre polynomials. Nethertheless, the link
between our approach andP2(cosθ), P4(cosθ) was established.
The next step will be the interpretation of these surfaces in terms
of invariants, to simplify further our representation. Indeed, the
trace of a given second-rank symmetrical tensor is an invariant
when considering averaged quadrics.10 Analytical equations of
averaged quadrics are then derived very easily, almost without
any calculation. Moreover, it is obvious that the surfaces
described above are connected to the frequency domain (in
hertz). Maybe, it could be possible to use these surfaces (after
inversion as Hz-1 ≡ s) for the description of pulse effects in
the time domain. Work is now in progress for such a representa-
tion.

Appendix

Expression of the matrixP relating two frames oriented by
the Euler angles (R, â, γ) defined in Figure 1 is shown in Chart
1.

a-i coefficients are given above.
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